

Figure 2.7 Cumulative history of O_2 released by photosynthesis through geologic time. Of more than 5.1×10^{22} g of O_2 released, about 98% is contained in seawater and sedimentary rocks, beginning with the occurrence of Banded Iron Formations at least 3.5 billion years ago (bya). Although O_2 was released to the atmosphere beginning about 2.0 bya, it was consumed in terrestrial weathering processes to form Red Beds, so that the accumulation of O_2 to present levels in the atmosphere was delayed to 400 mya. Modified from Schidlowski (1980).

			Oxidized Reduced		
		H_2O/O_2	C	N	S
H ₂ O	/ O ₂		Photosynthesis $H_2O \longrightarrow O_2$ $CO_2 \longrightarrow C$		
Reduced ——— Oxidized	С	Respiration $C \longrightarrow CO_2$ $O_2 \longrightarrow H_2O$			respiration $\rightarrow CO_2$ $SO_4 \rightarrow H_2S$
	N		Chemoautotrophy nitrification NH ₄ → NO ₃ CO ₂ → C		
	S		$S \longrightarrow SO_4$ $CO_2 \longrightarrow C$		

Figure 2.8 Metabolic pathways that couple oxidations of C, N, and S on the Earth's surface. For each pathway, the constituent at the top is transformed from an oxidized form obtained from the environment to a reduced form, released to the environment. At the same time, the constituent at left is transformed from a reduced form to an oxidized form. Modified from Schlesinger (1989).