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All major types of nutrition and metabolism evolved among prokaryotes:
they are the ultimate biochemists

The prokaryotes exhibit some unique modes of nutrition as well as every type
of nutrition found in eukaryotes.

Major Modes of Nutrition:

Prokaryotes exhibit a great diversity in how they obtain the necessary resources
(energy and carbon) to synthesize organic compounds.

= Some obtain energy from light (phototrophs), while others use
chemicals taken from the environment (chemotrophs).

= Many can utilized CO, as a carbon source (autotrophs) and others
require at least one organic nutrient as a carbon source (heterotrophs).
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Depending upon the energy source AND the carbon source, prokaryotes have
four possible nutritional modes:

1. Photoautotrophs: Use light energy to synthesize organic
compounds from CO, — Includes the cyanobacteria. (Actually all
photosynthetic eukaryotes fit in this category.)

2. Chemoautotrophs: Require only CO, as a carbon source and
obtain energy by oxidizing inorganic compounds. This mode of
nutrition is unique only to certain prokaryotes.

3. Photoheterotrophs: Use light to generate ATP from an organic
carbon source. This mode of nutrition is unique only to certain
prokaryotes.

4. Chemoheterotrophs: Must obtain organic molecules for energy
and as a source of carbon. Found in many bacteria as well as most
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Adenosine-5’-triphosphate (ATP)

The energy molecule
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Two Ways to Make ATP: Quick & Dirty or
Turbo-Charged
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7 1 Cellular Locations for Energy Pathways
- in Eukaryotes and Prokaryotes
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Table 9.2  ATP Yield from the Aerobic Oxidation
of Glucose by Eucaryotic Cells

Glycolytic Pathway
Substrate-level phosphorylation (ATP) 2 ATP?
Oxidative phosphorylation with 2 NADH 6 ATP
2 Pyruvate to 2 Acetyl-CoA
Oxidative phosphorylation with 2 NADH 6 ATP
Tricarboxylic Acid Cycle
Substrate-level phosphorylation (GTP) 2 ATP
Oxidative phosphorylation with 6 NADH 18 ATP
Oxidative phosphorylation with 2 FADH, 4 ATP
‘Total Aerobic Yield 38 ATP

“ATP yields are caleulated with an assamed PO ratio of 3.0 for NADH and 2.0 for FADH ..

Fermentation — Key Features

(1) Substrate-level phosphorylation is the rule*.

(2) Always anaerobic (even when some O, might be around).
(3) No externally supplied terminal electron acceptor.

Many types.... 2 major themes

(1) NADH+H" gets oxidized to NAD*

(2) Electron acceptor is usually Pyruvate or its derivative.

*Rules are always meant to be broken!




Pasteur Effect: ~20X more biomass when aerated

Fermentation
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Figure 9.9  Reoxidation of NADH During Fermentation, NADH
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pyruvate derivative (X). Either lactate or reduced product Y result.
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