All major types of nutrition and metabolism evolved among prokaryotes: they are the ultimate biochemists

The prokaryotes exhibit some unique modes of nutrition as well as **every type** of nutrition found in eukaryotes.

Major Modes of Nutrition:

Prokaryotes exhibit a great diversity in how they obtain the necessary resources (energy and carbon) to synthesize organic compounds.

• Some obtain energy from light (phototrophs), while others use chemicals taken from the environment (chemotrophs).

• Many can utilized CO_2 as a carbon source (autotrophs) and others require at least one organic nutrient as a carbon source (heterotrophs).

Depending upon the energy source and the carbon source, prokaryotes have **four** possible nutritional modes:

1. Photoautotrophs: Use light energy to synthesize organic compounds from CO_2 – Includes the cyanobacteria. (Actually all photosynthetic eukaryotes fit in this category.)

2. Chemoautotrophs: Require only CO_2 as a carbon source and obtain energy by oxidizing inorganic compounds. This mode of nutrition is unique only to certain prokaryotes.

3. Photoheterotrophs: Use light to generate ATP from an organic carbon source. This mode of nutrition is unique only to certain prokaryotes.

4. Chemoheterotrophs: Must obtain organic molecules for energy and as a source of carbon. Found in many bacteria as well as most eukaryotes.

	e- donor	e- acceptor	C source	Organisms
Autolithotrophy	7			
	H_2	O_2	CO_2	Hydrogen oxidizers
	$HS^{-}, S^{0}, S_{2}O_{3}^{-2}$	O_2	CO_2	Sulfur oxidizers
	Fe^{+2}	\mathbf{O}_2	CO_2	Iron oxidizers
	Mn^{+2}	\mathbf{O}_2	CO_2	Manganese oxidizers
	NH_4^+, NO_2^-	\mathbf{O}_2	CO_2	Nitrifiers
	$HS^{-}, S^{0}, S_{2}O_{3}^{-2}$	NO ₃ ⁻	CO_2	Denitrifying/S-oxidizers
	H_2	NO ₃ ⁻	CO_2	Hydrogen oxidizers
	H_2	S ⁰ , SO ₄ ⁻²	CO_2	Sulfate Reducers (SRBs)
	H_2	CO_2	CO_2	Methanogens & Acetogens
Heteroorganotr	ophy			
	Org.C	\mathbf{O}_2	Org.C	Aerobic Heterotrophy
	Org.C	NO ₃ ⁻	Org.C	Denitrifyers
	Org.C	S ⁰ , SO ₄ ⁻²	Org.C	Sulfate Reducers (SRBs)
	Org.C	Org.C	Org.C	Fermenters
Methylotrophy				
	CH ₄ ,(C-1's)	O ₂ ,SO ₄ ⁻²	CH ₄ ,CO ₂ ,CO	Methane (C-1) oxidizers

Potential Microbial Metabolic Processes: