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Microbial Genetic
Exchange & Plasmids

* Microbial Genetic Exchange iIs unidirectional!
— Transformation
— Transduction
— Conjugation

e Each requires Homologous Recombination

o Types of plasmids




Microbial ..)
Genetic ——
h Virus injection,
Exchange chromosome

disruption

Donor
DNA-

containing
viruses

Transformation Transduction



Plasmid-containing Donor cell with
donor cell integrated plasmid

_Recipient _
\— cells —(

Cniuguiion: Conjugation:
Plasmid Chromosome
transfer transfer



Bacterial

chromosome Transforming DNA

Transformation by
a Gram +
competent cell

DNA binding protein

—— Competence-specific
——— single-stranded DNA
binding protein

Binding DNA
(a) Nuclease
/ \\:5|
— A
ad A Free nucleotides

RecA protein
Uptake of ssDNA

Homologous
recombination

Transformed cell




Demonstration of transformation
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Frederick Griffith, 1928



Demonstration of transformation
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Generalized transduction
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Generalized transduction (cont.)
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Specialized transduction
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Bacterial Conjugation
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Bacterial Conjugation
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Homologous Recombination
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Homologous Recombination
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Homologous Recombination
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Types of homologous recombination in bacteria
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Types of homologous recombination in bacteria
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R plasmids of pathogenic bacteria
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Figure 25.19 Structure of the Ti plasmid of Agrobacterium tumefa-
ciens. -DNA is the region transferred o the plant. Arrows indicate the
direction of transcription of each gene. The entire Ti plasmid is about
200 kbp of DNA and the T-DNA is about 20 kbp.

J Handedsman

Figure 25.18 Crown gall. Photograph of a crown gall tumor {arrow) on
a tobacco plant caused by the crown gall bacterium Agrobacterium fume-
faciens. The disease usually does not kil the plant but may weaken it and

make it more susceptfible to drought and diseases. Brock, 13t ed. 2012, page 729



Chromosomal & nonchromosomal genetic
elements

Table 7.1 Kinds of genetic elements

Organism Element Description
Prokaryote Chromosome Extremely long, usually circular,
double-stranded DNA molecule
Plasmid Typically a relatively short,
usually circular, double-
stranded DN A molecule,
which is extrachromosomal
Eukaryote Chromosome Extremely long, linear, double-
stranded DN A molecule
Plasmid” Typically a relatively short
circular or linear double-
stranded DN A molecule,
which is extrachromosomal
All Organisms Transposable Double-stranded DNA molecule
elements always found within another
DNA molecule
Mitochondrion Chromosome Intermediate-length DNA

or chloroplast

Virus Genome

molecules, usually circular

Single- or double-stranded DNA
or RNA molecule

“Plasmids are uncommon in eukaryotes.



Whole-genome shotgun sequencing
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Sanger Sequencing

PCR in presence of fluorescent, chain-terminating nucleotides
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Next-Generation Sequencing (NGS)

lllumina Platform



Next-Generation Sequencing (NGS)

oua ey ety ABA Platform
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(C) Assembly of sequences

— ) — - s Assemble
—b_’—’ —) — =) overlapping
ATOTIE ,I, fragments.
indicate —
sense” of — Sequence
sequences. T DNA by PCR
— — amplification.

(D) Annotation

|dentify
genes and
functions.




Sequencing & Annotation

e General outline

1. Find Sample

2. Make Library-Depends on sequencing
te C h n O I Ogy Cost per Raw Megabase of DNA Sequence

3. Assemble & Annotate

e Sangervs. NGS
— Sanger is expensive
— NGS is computationally
demanding for assembly

e Other methods for DNA s

Include
— |lon Torrent, PacBio, SOLID
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Genes In a portion of bacterial genome
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1IE1JCNIGWAE  Comparison of regulatory genes in selected
bacterial genomes

# Genes in # Regulatory % of

Microorganism the Genome Proteins Total
Pseudomonas aeruginosa 5570 468 8.4
Escherichia coli 4289 250 5.8
Bacillus subtilis 4100 217 5.3
Mycobacterium tuberculosis 3918 117 3.0

Helicobacter pylori 1566 18 1Lt
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Figure 25.8 Microbiology: An Evolving Science
© 2009 W.W. Norton & Company, Inc.



Table 15.2 Gene function in bacterial genomes

Percentage of genes on
chromosome in that category

Functional Escherichia Haemophilus Mycoplasma

categories coli influenzae genitalium
(.64 Mbp)® (1.83 Mbp)® (0.58 Mbp)®
Metabolism 21.0 19.0 14.6
Structural 5.5 4.7 3.6
Transport 10.0 7.0 7.3
Regulation 8.5 6.6 6.0
Translation 4.5 8.0 21.6
Transcription 1.3 1.5 2.6
Replication 2.7 4.9 6.8
Other, known 8.5 5.2 5.8
Unknown 38.1 43.0 32.0

7 Chromosome size. Each organism listed contains only a single circular
chromosome.



Genome size vs. ORFs
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Figure | Number of genes (ORFs) plotted against genome size for 44 fully sequenced genomes,
including ten Archaea (squares) and 34 Bacteria. Obligate bacterial parasites are denoted by triangles;
all other bacteria are shown as diamonds. Mycobacterium leprae is a genome ‘in decay’ that has a
large number of pseudogenes. The archaeon Aeropyrum pernix is unusual in having an excessive
number of duplicated ORFs.



Crganism
(number of genes)

Mycoplasma genitalium
(470

Buchnera species
(588)

Rickettsia prowazekii
(834)

Chlamydia trachomatis
(B94)

Treponema pallidum
(1.041)

Mycobacterium leprae
(1.604)

Partial
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Alpha-
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Figure 2 Many routes to intracellular adaptation. The differing presence (4 ) or absence ( —) of
certain metabolic pathways in the streamlined genomes of parasitic bacteria shows how variable the

process may be,



Global Transposon Mutagenesis
and a Minimal Mycoplasma
Genome

Clyde A. Hutchison IlIl,"** Scott N. Peterson,’*{ Steven R. Gill,’
Robin T. Cline,” Owen White," Claire M. Fraser,’
Hamilton O. Smith,"{ ). Craig Venter'}§

Mycoplasma genitalium with 517 genes has the smallest gene complement of
any independently replicating cell so far identified. Global transposon mu-
tagenesis was used to identify nonessential genes in an effort to learn whether
the naturally occurring gene complement is a true minimal genome under
laboratory growth conditions. The positions of 2209 transposon insertions in
the completely sequenced genomes of M. genitalium and its close relative M.
pneumoniae were determined by sequencing across the junction of the trans-
poson and the genomic DNA. These junctions defined 1354 distinct sites of
insertion that were not lethal. The analysis suggests that 265 to 350 of the 480
protein-coding genes of M. genitalium are essential under laboratory growth
conditions, including about 100 genes of unknown function.

265 to 350 genes are the minimum necessary genome



Complete Chemical Synthesis, Assembly,
and Cloning of a Mycoplasma

genitalium Genome

Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova,
Holly Baden-Tillson, Jayshree Zaveri, Timothy B. Stockwell, Anushka Brownley, David W. Thomas,
Mikkel A. Algire, Chuck Merryman, Lei Young, Viadimir N. Noskov, John 1. Glass, ). Craig Venter,
Clyde A. Hutchison 111, Hamilton 0. Smith*

We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome,

named M. genitalium JCV1-1.0, contains all the genes of wild-type M. genitalium G37 except

MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for

selection. To identify the genome as synthetic, we inserted “watermarks” at intergenic sites known

to tolerate transposon insertions. Overlapping “cassettes” of 5 to 7 kilobases (kb), assembled from SClence 20 10
chemically synthesized oligonucleotides, were joined bv in witen raramhinatian tn neaduea !
intermediate assemblies of approximately 24 kb, 72 k

genome" )}, which were all cloned as bacterial artificial c re ati D n Df a B acte ri a I ce I I c D ntru I Ie d

these intermediate clones were sequenced, and clones

sequence were identified. The complete synthetic gen h Ch - II S h 2 d G

associated recombination cloning in the yeast Sacchar v a em l na v vnt ESIZE B “Dme
sequenced. A clone with the correct sequence was ide

generally useful for constructing large DNA molecules Daniel G. Gibson,” John L. Glass,® Carole Lartigue,” Vladimir N. Noskov,* Ray-Yuan Chuang,”
from combinations of natural and synthetic DNA segm Mikkel A. Algire," Gwynedd A. Benders,” Michael G. Montague,® Li Ma,® Monzia M. Moodie,’

Chuck Merryman,’ Sanjay Vashee,' Radha Krishnakumar,® Nacyra Assad-Garcia,®

SC|ence’ 2008 Cynthia Andrews Pfannkoch,! Evgeniya A. Denisova,' Lei Young,' Zhi Qing i,
Thomas H. Segall-Shapire," Christopher H. Calvey," Prashanth P. Parmar,' Clyde A. Hutchison 11,

Hamilton O. Smith,” ]. Craig Venter**

We report the design, synthesis, and assembly of the 1.0B—mega—base pair Mycoplasma mycoides
JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation
into a M. capricofum recipient cell to create new M. mycoides cells that are controlled only by the
synthetic chromosome. The only DNA in the cells is the designed synthetic DNA sequence,
including “watermark” sequences and other designed gene deletions and polymorphisms, and
mutations acquired during the building process. The new cells have expected phenotypic properties
and are capable of continuous self-replication.



Table 16.3




Table 16.3

From Fraser et al., Nature 2000, vol. 406. p. 800.
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Lessons from full genomes

Size range 600Kb to 12Mb

Vast number of putative genes with no known
function

Pathogemmty can be conferred by “Pathogenicity
Islands” 44.5Kb in Bacillus anthracis

Symbiotic Island of >600Kb in Sinorhizobium loti
iIncluding genes for nodulation and N-fixation

Adaptive gene losses in parasitic bacteria

Rickettsia and Chlamidia are ATP thieves using
the same “alien” ADP/ATP translocase

Relative proportions of functional genes




Metagenomics

 Genomic analysis of pooled DNA from
an environmental sample containing
organisms that have not been isolated

e Describes the functional capacities of
the community



Community structure and metabolism
through reconstruction of microbial
genomes from the environment

Gene W. Tyson', Jarrod Chapman™, Philip Hugenholtz', Eric E. Allen', Rachna J. Ram', Paul M. Richardson®, Victor V. Solovyev’,
Edward M. Rubin’, Daniel S. Rokhsar ' & Jillian F. Banfield '~

' Department of Environmental Science, Policy and Management, Eﬂsp:zrtmfru af Earth and Planetary Sciences, and 'kﬂﬂpn rtrment of Physics, University of Califernia,
Berkeley, California 94720, L'5A
Joint Genome Institute, Walnut Creek, California 94598, USA

Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their
roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report
reconstruction of near-complete genomes of Leptospirilfum group |l and Ferroplasma type |l, and partial recovery of three other
genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of
genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different
individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level.
The Leptospirillum group Il genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance
variants. The Ferroplasma type || genome seems to be a composite from three ancestral strains that have undergone homologous
recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the
pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme
environment.
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Human Microbiome Project

To demonstrate hypothesized

correlations between the microbiome

and human health and disease.

These projects will leverage

advances made by the HMP's large
NIH HUMAN  scale seguencing efforts to examine

MICROBIOME the relationship between changes in

PROJECT the human microbiome and diseases
of interest.

http://www.hmpdacc.org/



Human Microbiome
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