More on Chemotrophic Potential

Identification for the Octopus Spring Pink Filaments

Aquifex pyrophilus

Yellowstone "Pink Filament" Isolates

Fig. 4-21 Hydrogenase and Chemolithotrophic Metabolism. Hydrogenase splits hydrogen into protons and electrons that are transported via a membrane-bound electron transport system. This transport establishes a proton gradient.

Figure 9.20 Reversed Electron Flow. The flow of electrons in the transport chain of *Nitrobacter*. Electrons flowing from nitrite to oxygen (down the reduction potential gradient) will release energy. It requires protonmotive force or ATP energy to force electrons to flow in the reverse direction from nitrite to NAD⁺.

Winogradsky's drawings of *Beggiatoa*

White Mat Filaments Sulfur-oxidizing Bacteria Dive R662 Axial Caldera Ashes Vent Field ROPOS Vent Settling Array "L" 07/20/02

Loihi Volcano

FIG. 3. L. columnes-like sheaths collected at the Pohakus write tear tracker 27. The extraple has been stained with Syta. Patel B is the entrie image as in patel A but viewed by splithosis extracts to toward a fiberent of cells inside the itor-encreated due ath. The cells are only visible when stained: inside the sheaths are empty. But. 5 une.

Neutrophilic Fe-Oxidizing Bacteria zeta-Proteobacteria (novel class)

Table 17.3Sulfur compounds and electron donors for
sulfate reduction

Compound

Oxidation state

Oxidation states of key sulfur compounds

Organic S $(R-SH)$	-2
Sulfide (H_2S)	-2
Elemental sulfur (S^0)	0
Thiosulfate $(S_2O_3^{2-})$	+2 (average per S)
Sulfur dioxide (SO_2)	+4
Sulfite (SO_3^{2-})	+4
Sulfate (SO_4^{2-})	+6

Some electron donors used for sulfate reduction

H ₂	Acetate
Lactate	Propionate
Pyruvate	Butyrate
Ethanol and other alcohols	Long-chain fatty acids
Fumarate	Benzoate
Malate	Indole
Choline	Hexadecane

SRB's can make active sulfate compounds

PAPS (Phosphoadenosine 5'-phosphosulfate)

Sulfur Disproportionation

 $S_2O_3^{2-}$ + $H_2O \rightarrow SO_4^{2-}$ + H_2S $\Delta G^{0'}$ = -21.9 kJ/rxn (not huge!)

Get your cake and eat it too!

Anoxic ammonia oxidation: Anammox

A bizarre, toxin-filled microbe that could clean up sewage plants across the globe.

Contains: hydrazine

Brocadia anammoxidans (another Planctomyces)

Table 17.2	Oxidation state	es of key nitrogen compounds
Compound	Oxidation state	
Organic N (R	$-NH_2$)	-3
Ammonia (N	$H_3)$	-3
Nitrogen gas	(N_2)	0
Nitrous oxide	(N_2O)	+1 (average per N)
Nitrogen oxid	le (NO)	+2
Nitrite (NO ₂ ⁻	-)	+3
Nitrogen diox	tide (NO_2)	+4
Nitrate (NO ₃	_)	+5

$NH_4^+ + NO_2^- \rightarrow N_2 + H_2O$

Autofluorescence in methanogen cells due to the presence of the unique electron carrier $F_{\rm 420}$

Coenzymes of methanogenesis Two types: C_1 carriers or redox **COO**⁻ CH_2 CH_2 H₂N C—CH₂—CH₂—CH]₃—CH -CH₂—CH₂[— COO⁻ COO⁻ **Methanofuran COO**⁻ ĊH₂ CH₂[-CHOH]₃-CH₂-O NH CH_2 HN он но HC CH₂-HN CH₃ COO-**∩**-H₂N CH₃ N H Methanopterin

Autotrophy? Corrinoids with Co centers! Autotrophy? Corrinoids with Co centers!

Methanogenesis

Chemoautotrophs: $CO_2 \rightarrow CH_4 + Org. C$ H_2 as electron donor

Chemoorganotrophs: Acetate/MeOH \rightarrow CH₄ + CO₂ Org. C as electron donor

Global Biogenic Methane Production: 1/3 Chemoautotrophs 2/3 Chemoorganotrophs

Take Home Message Methanogenesis

• Methanogenesis is the biological production of CH_4 from either CO_2 plus H_2 or from methylated compounds.

• A variety of unique coenzymes are involved in methanogenesis, and the process is strictly anaerobic.

• Energy conservation in methanogenesis involves both proton and sodium ion gradients.

• Only Archaea are able to pull this weird metabolism off.