Microbes as Agents of Infectious Disease

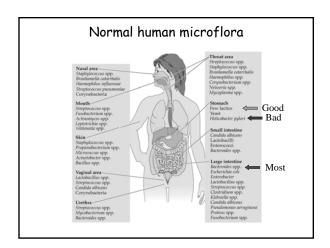
- Normal Flora
- Virulence and Pathogenicity
- Toxicity vs. Invasiveness

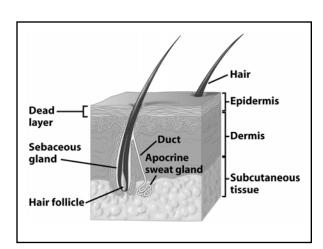
WE ARE NOT ALONE!

"We are outnumbered. The average human contains about 10 trillion cells. On that average human are about 10 times as many microorganisms, or 100 trillion cells...As long as they stay in balance and where they belong, [they] do us no harm...In fact, many of them provide some important services to us. [But] most are opportunists, who if given the opportunity of increasing growth or invading new territory, will cause infection."

- Sullivan (1989)

Take Home Message:


Bacterial Cells ~1014 cells/body


Eukarya Cells ~1013 cells/body

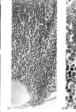
Normal Flora helps maintain our health

- Provides vitamins & nutrients
- Detoxify many compounds
- Prevent colonization of pathogens

Anatomical site	Genera ^a
Skin	Acinetobacter, Corynebacterium, Enterobacter, Klebsiella, Malasseziu (P), Microccus, Pityrosporus (P), Propiosibacterium, Proteus, Pszadowowas, Szaphylokoccus
Mouth	Streptococcus, Lactobacillus, Fasobacterium, Veillumella, Conynducturum, Veilsumella, Actinomyces, Geotrichum (f), Camfalo (f), Cymrectophyga, Eikmella, Prevotella, spirochetes (several georra)
Respiratory tract	Streptococcus, Staphylococcus, Corynobacterium, Neisseria, Harmophilus
Gastrointestinal tract	Lactobacillus, Streptococcus, Bacteroides, Bilidobacterium, Lubacterium, Poptococcus, Pepastreptococcus, Ruminococcus, Clostridium, Escherichia, Kidobalta, Proteus, Enterococcus, Stapholococcus
Urogenital tract	Escherichia, Klebwida, Protens, Neisseria, Latebacillus, Corynebutririum, Shaphylococcus, Canalda (f), Preveetia, Clostrálium, Poptostryptoccus, Urrupissana, Mycoplasma, Mycobacterium, Streptoccus, Terulopius (f)

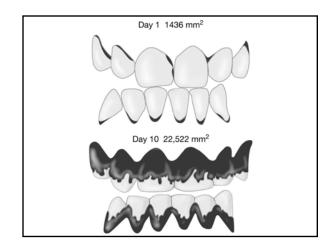
Skin:

Resident Microbes:
Most are Gram (+)
Staphylococcus
Micrococcus
Few G (-) & fungi


Environmental Conditions: Hostle

- High Salt
- Low pH
- Dry

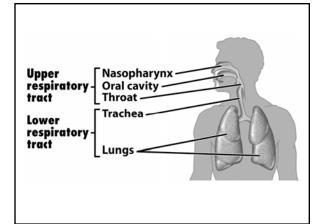
Dental Plaque Bacteria



Streptococcus mutans

Tooth Colonies Plaque Cross Section

Mouth:

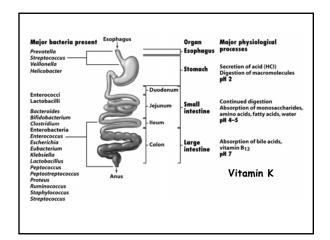

Resident Microbes:

Gram (+): Streptococcus & Lactobacilli

Gram (-): obligate anaerobes
Spirochetes: Borrelia

Environmental Conditions: More Favorable

- Moist, though contains lysozyme
- Lots of polysaccharides
- Lots of amylase & protease


Respiratory Tract:

Resident Microbes: Upper Only

Gram (+): Streptococcus & Staphylococcus

Environmental Conditions:

- Mucous membranes
- Others compete with potential pathogens

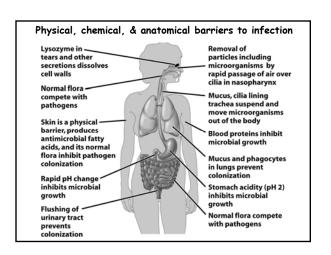
G.I. Tract:

Stomach: Hostle, pH ~2

Gram (+): Lactobacilli & Streptococcus

Gram (-): Helicobacter pylori

Small Intestine: Gradient in pH


low pH: Lactobacilli neutral: Enterococcus

Large Intestine: Moist and pH ~7

10¹¹ to 10¹² bacteria/g wet wt feces #1 is *Bacteroides vulgatus* at ~15%

E. coli is only ~0.03%

Methanogens can also be detectable

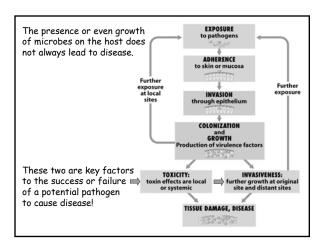
Virulence and Pathogenicity

Pathogen: A parasitic organism that causes damage to, or disease in its host.

Pathogenicity: The ability to cause disease.

Virulence: The relative degree or intensity of pathogenicity.

Virulence is determined by the five following characteristics of the pathogen →

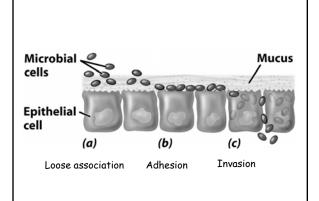

Invasiveness: The ability of the organism to spread to adjacent tissues or other tissues.

Toxigenicity: The ability of the organism to produce toxic products that cause disease and/or damage in the host.

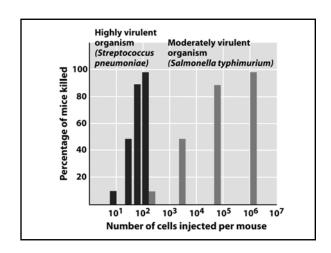
Infectivity: The ability of the organism to establish a focal point of infection through growth.

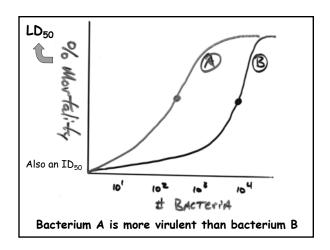
Pathogenic potential: The degree that the pathogen causes morbid symptoms.

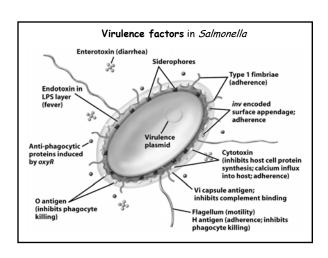
Hypersensitivity: Host's innate sensitivity to pathogen.



Determinants of Infectious Disease


To produce an infectious disease, a pathogen must be able to:

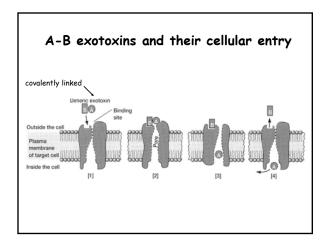

- 1. initially be transported to the host
- 2. adhere to, colonize or invade the host
- 3. grow, multiply, or complete its life cycle in the host
- 4. initially evade host defense mechanisms
- 5. damage the host by mechanical and/or chemical means

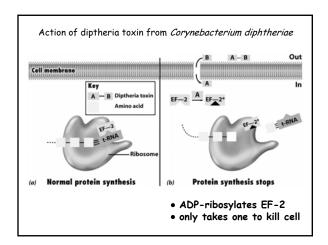

In the end it is - Numbers (of bacteria) that make you sick!

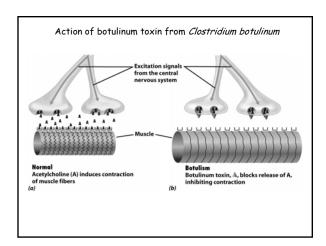
Adherence of microorganisms (a) Entero-toxic Vibrio cholerae (b) Entero-invasive E. coli

Fable 26.2 Adherence factors involved in attachment of organisms to host cells		
Adherence Factor	Example	
Fimbriae (adhesion proteins)	Proteus mirabilis—urinary tract infections	
	Neisseria gonorrhoeae-attach to urinary epithelia	
	Salmonella—attach to intestinal epithelia	
Capsule (glycocalyx)	Streptococcus pyogenes—M protein attaches to epithelia Streptococcus mutans—dextrans attach to teeth	
Capsule (glycocalyx)	Streptococcus salivarius and S. sanguis—attach to tongue epithelia	
Teichoic acids Lipoteichoic acids	Staphylococcus aureus—attach to nasal epithelia	

Table 26.3 Some enzymes produced by pathogenic bacteria that promote invasion of the host			
Enzyme	Organism	Function	
Collagenase	Clostridia	Breaks down collagen in connective tissue	
Coagulase	Staphylococcus aureus	Clot formation around point of entry protects from host defenses	
Elastase	Pseudomonas aeruginosa	Disrupts membranes	
Hyaluronidase	Streptococcus	Hydrolyzes hyaluronic acid-intercellular cement	
	Staphylococcus		
	Clostridium		
Lecithinase	Clostridia	Disrupts phosphatidylcholine in membranes	
Streptokinase	Staphylococcus	Digests fibrin clots	
	Streptococcus		

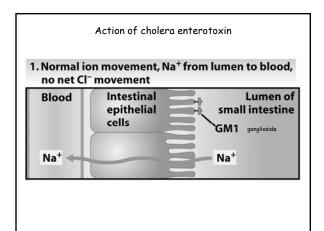

able 26.4 Virulence factors that are generally encoded in plasmids		
Organism	Factor	Disease
Escherichia coli	Enterotoxin	Diarrhea
Clostridium tetani	Neurotoxin	Tetanus
Staphylococcus aureus	Coagulase enterotoxin	Boils/skin infections food poisoning
Streptococcus mutans	Dextransucrase	Tooth decay
Agrobacterium tumefaciens	Tumor	Crown gall
Staphylococcus spp.	Antibiotic resistance	Various

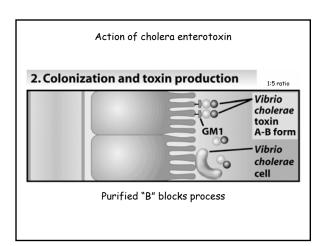

Virulent Factors: Antiphagocytic		
Table 26.5 Antiphagocytic factors produced by bacteria and their mode of action		
Factor	Action	
Leukocidins	Specific lytic agent for leukocytes including phagocytes	
Hemolysins	Form pores in host cells including macrophages. Streptolysin O affects sterols in membranes. Streptolysin S is a phospholipase	
Capsules (glycocalyx)	Long polymers of carbohydrate— physically prevents engulfment	
Fimbriae	 Bind to surface components of phagocytes, prevent close contact, and phagocytosis may not occur 	
	(2) Phase variation—a change in the antigenic composition	

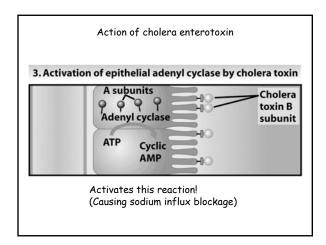

Exotoxins:

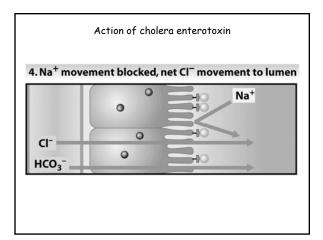
Extracellular toxic proteins released by pathogens.

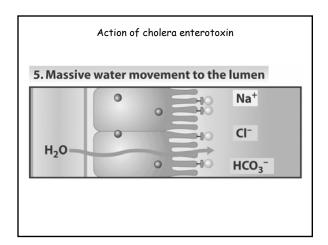
- 1. Cytolytic toxins cause cell lysis.
- 2. Superantigen toxins stimulate the immune system.
- 3. **A-B toxins** where one part binds to surface receptor and the second enters and impacts cellular function.

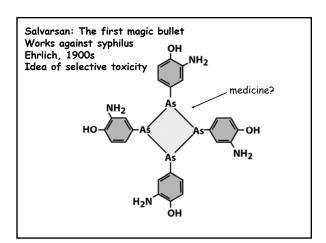


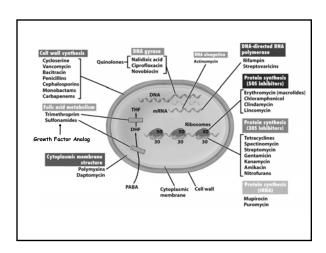



Enterotoxins:


Exotoxins that specifically affect the small intestine.


- 1. Generally cause massive secretion of fluid.
- 2. Leads to vomiting and/or diarrhea.
- 3. Often associated with food poisoning.


able 26.6 Characteristics of exotoxins and endotoxins		
Exotoxins	Endotoxins	
Heat labile 60°C to 80°C	Heat stable	
Immunogenic	Weakly immunogenic	
Cause no fever	Cause fever	
Can be lethal at low concentrations	Toxic at high doses	
Different genera produce different toxins	Similar regardless of source	
Released by live bacterium	Released on lysis of bacterium	
Inactivated by chemicals that affect proteins	Not generally harmed by chemicals that affect protein	


able 26.7 Some exotoxins produced by bacteria (Part 1)			
Exotoxin	Producing Organism	Disease	Effect
Diphtheria toxin	Corynebacterium diphtheriae	Diphtheria	Inhibits protein synthesis; affects heart, nerve tissue, liver
Botulism toxin	Clostridium botulinum	Botulism	Neurotoxin; flaccid paralysis
Perfringens toxin	Clostridium perfringens	Gas gangrene	Hemolysin, collagenase, phospholipase
Erythrogenic toxin	Streptococcus pyogenes	Scarlet fever	Capillary destruction
Pyrogenic toxin	Staphylococcus aureus	Toxic shock syndrome	Fever, shock
Exfoliative toxin	Staphylococcus aureus	Scalded skin	Massive skin peeling
Exotoxin A	Pseudomonas aeruginosa	(~ Diphtheria)	Inhibits protein synthesis

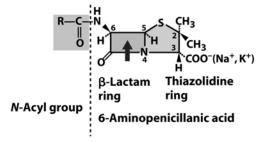
able 26.7 Some exotoxins produced by bacteria (Part 2)			
Exotoxin	Producing Organism	Disease	Effect
Pertussis toxin	Bordetella pertussis	Whooping cough	Stimulates adenyl cyclase
Anthrax toxin	Bacillus anthracis	Anthrax	Pustules; blood poisoning
Enterotoxin	Escherichia coli	Diarrhea	Water and electrolyte loss
Enterotoxin	Vibrio cholerae	Cholera	Water and electrolyte loss
Enterotoxin	Staphylococcus aureus	"Staph" food poisoning	Diarrhea, nausea
Enterotoxin	Clostridium perfringens	Food poisoning	Permeability of intestinal epithelia
Neurotoxin	Clostridium tetani	Tetanus	Rigid paralysis

Classification of Antibiotics:

- Inhibit growth "stat" Kill bacterium - "cide"
- 2. Broad and Narrow spectrum
- 3. Production Types:
 Natural
 Synthetic
 Semi-synthetic

Antibiotics Affecting Replication, Transcription, & Translation

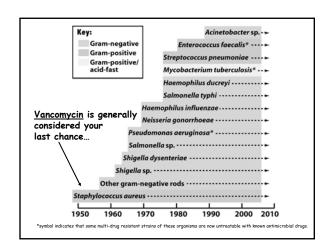
DNA replication:

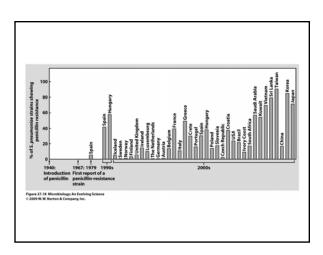

Nalidixic Acid & Novobiocin - Inhibits DNA gyrase

Transcription:

Rifampin - Beta subunit of RNA polymerase Actinomycin - DNA binding, blocks elongation

Streptomycin - Blocks initiation on SSU of ribosome
Chloramphenicol - Blocks elongation on LSU via peptide bond
Tetracycline - Blocks elongation SSU
Cycloheximide - Eucarya ribosome specific
Diptheria Toxin - EF blocker; both Archaea and Eucarya


How to build a better mouse trap: Penicillin A β-lactam antibiotic



Inhibits transpeptidation of peptidoglycan chains Forms the old 1-2-punch with autolysins

Mechanisms of Antibiotic Resistance

- Lacks structure antibiotic inhibits: 1. Mycoplasms lack a typical cell wall.
- 2. Impermeable to the antibiotic: Gram - bacteria impermeable to penicillin G .
- Alteration of antibiotic: $\beta\text{-lactamase}$ degrades antibiotic e.g., springs open
- 4. Modifies the target of the antibiotic.
- 5. Genetically modifies the pathway that the antibiotic affects.
- Efflux of the antibiotic: 6. Tetracycline gets pumped back out of the cell.

