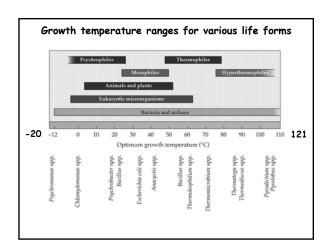
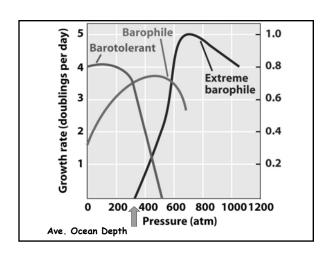
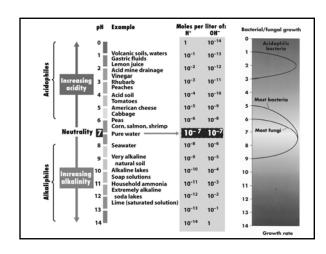

Microbial Growth

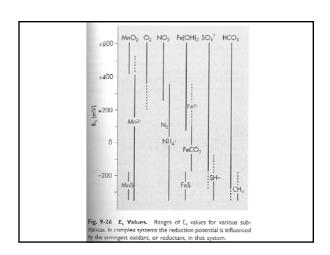

Environmental Forcing Functions:

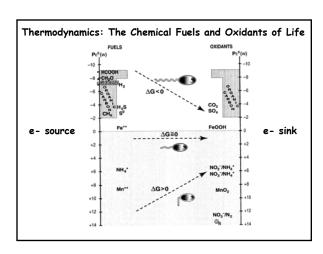
- Temperature: Psychrophile, Mesophile, Thermophile & Hyperthermophile Cardinal Temps: Min*, Max, & Optimal* Q₁₀ Rule: 10°C rise will double the growth rate*
- Pressure: Barophiles (Most are also psychrophiles!)
 Found only in the deep ocean....so far



able 6.3 Temperature range of Bacteria and Arch	naea
Species	Range (°C
Psychrophiles	
Cytophaga psychrophila	4-20
Bacillus insolitus	<0-25
Aquaspirillum psychrophilum	2-26
Mesophiles	
Escherichia coli	10 40
Lactobacillus lactis	18-42
Bucillus subtilis	22-40
Pseudomonas fluorescens	4-10
Thermophiles	
Bucillus thermoleovorums	42-75
Thermoleophilum album	45-70
Thermus aquaticus	40-79
Chloroflexus aurantiacus	45-70
Hyperthermophiles (Archant)	
Hyperthermus butylicus	85 108
Methanothermus fervidus	65 97
Pyrodictium occultum	80 110
Thermococcues celer	70-95




Microbial Growth


Environmental Forcing Functions:

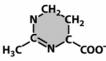
- pH: acidophiles & alkaliphiles cytoplasm still near neutral
- Eh: available electron donors & terminal electron acceptors

affects the chemistry of the environment

Microbial Growth

Environmental Forcing Functions:

- Salt: Halophiles Compatible solutes: amino acid derivatives (e.g., proline & glycine), sugars, & alcohols.
- Water Activity: Xerophiles (live in very dry habitats) Rem: All microbes are osmotrophs, must use organic material in solution!
- Oxygen Usage: aerobe, facultative (an)aerobe, microaerophile, obligate anaerobe DeTox enzymes: Catalase, Peroxidase, SOD

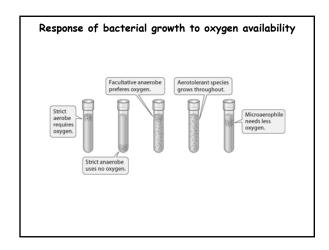


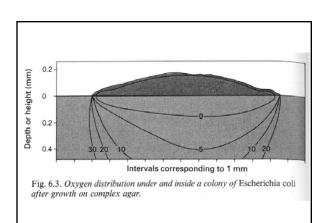
Compatible solutes

1. Amino acid-type and related solutes: **Ectoine**

ĊH³ $H_3C - \dot{N}^+ - CH_2 - COO^-$ ĊH₃

Glycine betaine




Dimethylsulfoniopropionate

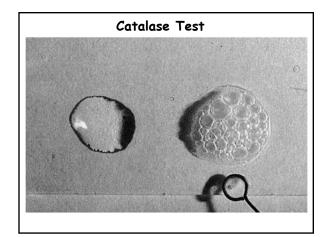
$$\begin{array}{ccc} \mathsf{CH_3} & \mathsf{O} \\ \mathsf{I} & \mathsf{II} \\ \mathsf{H_3C} - \overset{\mathsf{S}}{\underset{+}{\mathsf{}}} - \mathsf{CH_2CH_2C} & -\mathsf{O}^{\scriptscriptstyle{-}} \end{array}$$

Compatible solutes 3. Alcohol-type solutes: Glycerol Mannitol CH₂OH CH₂OH CHOH HO—C—H CH₂OH HO—C—H H—C—OH H—C—OH CH₂OH

Гуре		Organisms	$a_{\rm w}$
Nonhalophil	les	Aquaspirillum and Caulobacter	1.00
Marine form	ıs	Pseudomonads and Alteromonas	0.98
Moderate ha	lophiles	Vibrio species and gram-positive cocci	0.91
Extreme halo	ophiles	Halobacterium and Halococcus	0.75

	ormula	Simplified Electronic Structure	oin of uter ectrons
Form	P.	S E S	R O E
Triplet oxygen (normal atmospheric form)	3O_2	Ó—Ó	1
Singlet oxygen Nasty!	$^{1}O_{2}$	Ó—Ó	
Superoxide free radical	O_{z}^{-}	Ö—Ö	(f) (f)
Peroxide	O_2^{2-}	Ö—Ö	(I) (I)

4	electron	reduction	of	02	to	water
---	----------	-----------	----	----	----	-------


$$O_2 + e^- \rightarrow O_2^-$$
 Superoxide
 $O_2^- + e^- + 2 H^+ \rightarrow H_2O_2$ Hydrogen peroxide
 $H_2O_2 + e^- + H^+ \rightarrow H_2O + OH \cdot$ Hydroxyl radical
 $OH \cdot + e^- + H^+ \rightarrow H_2O$ Water

Overall:
$$O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$$

Table 9-6 Bacterial Enzymes that Protect the Cell Against Toxic Forms of Oxygen			
Microorganism	Catalase	Superoxide Dismutase	
Aerobe	+	+	
Facultative anaerobe	+	+	
Microaerophile	_	+	
Obligate anaerobe		OCCUPANT	

(a) Catalase:

$$H_2O_2 + H_2O_2 \rightarrow 2 H_2O + O_2$$

(b) Peroxidase:
 $H_2O_2 + NADH + H^+ \rightarrow 2 H_2O + NAD^+$
(c) Superoxide dismutase:
 $O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$
(d) Superoxide dismutase/catalase in combination:
 $4O_2^- + 4 H^+ \rightarrow 2 H_2O + 3 O_2$
(e) Superoxide reductase:
 $O_2^- + 2 H^+ + cyt c_{reduced} \rightarrow H_2O_2 + cyt c_{oxidized}$

An important diagnostic indicator for the id of Pseudomonas and Neisseria spp. Oxidase Test BBL** Bry Silds** E. col. Ps. aeruginosa DICKNSON