Microbes and Mineral Cycling

Biogeochemical cycles on a
global scale



Photosynthesis Is the
Source of Atmospheric O,

» Cyanobacteria, which evolved the
ability to split water into hydrogen
ions and O,, created atmospheric O,.

+ Accumulation of free O, in the
atmosphere made possible the
evolution of aerobic metabolism.
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Figure 2.7 Cumulative history of O, released by photosynthesis through geologic time. Of
more than 5.1 X 10% g of O; released, about 98% is contained in seawater and sedimentary
rocks, beginning with the occurrence of Banded Iron Formations at least 3.5 billion years
ago (bya). Although O, was released to the atmosphere beginning about 2.0 bya, it was
consumed in terrestrial weathering processes to form Red Beds, so that the accumulation of O,
to present levels in the atmosphere was delayed to 400 mya. Modified from Schidlowski (1980).

Present-day location of O,



Banded iron formations are evidence of oxygenic photosynthesis
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Figure 3.6 Seasonal fluctuations in the concentration of atmospheric CO, (1981-1984),
shown as a function of 10 latitudinal belts (Conway et al. 1988). Note the smaller amplitude

of the fluctuations in the southern hemisphere, reaching peak concentrations during northern
hemisphere minima.
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Balance between biosynthesis and biodegradation

Cycling of carbon
— is dependent on
CO I N\m—— biodegradation and
Biosynthesis . photosynthesis.

In atmosphere
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The carbon cycle, closely connected with oxygen cycle
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Table 19.3 Major carbon reservoirs on Earth

Carbon Percent of total

Reservoir (gigatons)“ carbon on Earth
Oceans 38 X 10° (>95% 0.05

is inorganic C)
Rocks and sediments 75 X 10° (>80% >99.5°

is inorganic C)
Terrestrial biosphere 2 X 10° 0.003
Aquatic biosphere 1-2 0.000002
Fossil fuels 4.2 x 10° 0.006
Methane hydrates 10* 0.014
Atmosphere 720 0.005

7 One gigaton is 10” tons. Data adapted from Science 290:291-295 (2000).
Y Much of the organic carbon is in prokaryotic cells.
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Fate of major biomolecules

(Ca rbon is converted to COzJ
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Options for a microbial community in aguatic sediments:
one microbe’s waste 1S another microbe’s treasure!
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Figure 14.21 Microbiology: An Evolving Science
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Fig. 22. A comparison between C, S and N oxidation/reductions. The most reduced and the
most oxidized compounds of the C, S and N cycles are arranged in pairs, separated by a distance
which represents an 8 ¢~ difference between the extremes. Given vertically are the G/, for the
oxidation, by O,, of the reduced form. There is a decreasing energy yield through the series C,
S to N which is represented by the vertical distance between the oxidized and the reduced forms.
The location of the lines relative to each other is only approximately correct and is designed to
illustrate the decrease in reducing potential through the series H,, CH,, H,S to NH; and the
increase in oxidizing potential through the series CO,, SOZ~, NOj to O,.



Take Home Message

e The oxygen and carbon cycles are interconnected
through the complementary activities of
autotrophic and heterotrophic organisms.

e Microbial decomposition is the single largest
source of CO, released to the atmosphere.



Microbes and Origins of Life

Evolution has occurred almost
elusively in a microbial world !l



Oldest Known Fossils of Living Organisms (~3500 Mya)




Living Columnar Stromatolites, Shark Bay, Western Australia




Modern Stromatolites from Yellowstone Natl. Park




Prebiotic syntheses
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FIG. 1 The largest impacts on Earth and Moon. Open boxes are lunar, filled
boxes terrestrial. Lunar craters are Tycho, Copernicus, Langrenus, Hausen,
Tsiolkovski, Iridum, Orientale and Imbrium. Terrestrial events are the K/T
impact, Manicougan, Sudbury, Vredevort and an impact energy corresponding
to the thickness of Archaean spherule beds. Ovals are self energies of
formation; the early box refers to a possible Moon-forming impact. Impact
estimates between 3.8 and 4.4 Gyr are discussed in the text. The stippled
region for Earth is inferred from these data. The depth of ocean vaporized
by the impact is also given; the dashed line corresponds to an ocean-

vaporizing impact. A possible but extremely unlikely collision with Chiron is
placed safely in the future.

Impact Frustration
period forces origins of
life intfo a narrow time
period to have gotten
started!

Hydrothermal vents
may have served as
zones of refuge.
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Figure 1. Diagrammatic “Universal” phylogenetic tree of life, based on small-subunit ribosomal RNA
sequences. Based on analyses of Barns et al. (1996b), Olsen et al. (1994), and Sogin (1994).



Origin of Life???
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Porphyrin Ring opens
many possibilities for
metabolic pathwaysl!!

Which ones are
Domain specific?
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