More on Chemotrophic Potential

Table 17.3Sulfur compounds and electron donors for sulfate reduction	
Compound	Oxidation state
Oxidation states of key sulfur cor	npounds
Organic S (R-SH)	-2
Sulfide (H ₂ S)	-2
Elemental sulfur (S ⁰)	0
Thiosulfate $(S_2O_3^{2-})$	+2 (average per S)
Sulfur dioxide (SO ₂)	+4
Sulfite (SO ₃ ²⁻)	+4
Sulfate (SO ₄ ²⁻)	+6
Some electron donors used for su	lfate reduction
H ₂	Acetate
Lactate	Propionate
Pyruvate	Butyrate
Ethanol and other alcohols	Long-chain fatty acids
Fumarate	Benzoate
Malate	Indole
Choline	Hexadecane

Compound	Oxidation state
Organic N (R-NH ₂)	-3
Ammonia (NH ₃)	-3
Nitrogen gas (N ₂)	0
Nitrous oxide (N2O)	+1 (average per N)
Nitrogen oxide (NO)	+2
Nitrite (NO ₂ ⁻)	+3
Nitrogen dioxide (NO ₂)	+4
Nitrate (NO ₃ ⁻)	+5

Autofluorescence in methanogen cells due to the presence of the unique electron carrier F_{420}

Methanogenesis

Chemoautotrophs: $CO_2 \rightarrow CH_4 + Org. C$ H_2 as electron donor

Chemoorganotrophs: Acetate/MeOH \rightarrow CH₄ + CO₂ Org. C as electron donor

Global Biogenic Methane Production: 1/3 Chemoautotrophs 2/3 Chemoorganotrophs

Take Home Message Methanogenesis

- Methanogenesis is the biological production of CH_4 from either CO_2 plus H_2 or from methylated compounds.

• A variety of unique coenzymes are involved in methanogenesis, and the process is strictly anaerobic.

• Energy conservation in methanogenesis involves both proton and sodium ion gradients.

• Only Archaea are able to pull this weird metabolism off.