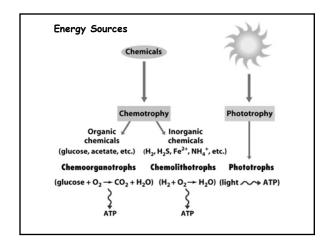
Microbes as Energy Transducers

- The Metabolic Menu
- Metabolic Strategies
- Respiration & Fermentation
- · Chemolithotrophy
- · Photoautotrophy
- Biogeochemical Cycles
 Metabolism in Early Microbes

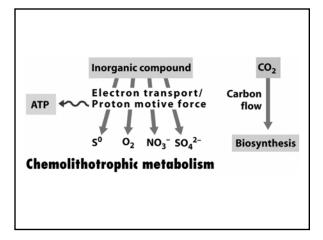

All major types of nutrition and metabolism evolved among microbes: they are the ultimate biochemists

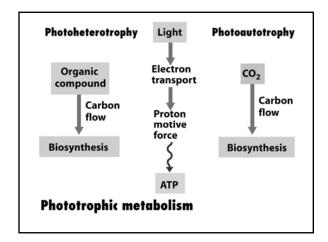
The microbes exhibit some unique modes of nutrition as well as every type of nutrition found in eukaryotes.

Major Modes of Nutrition:

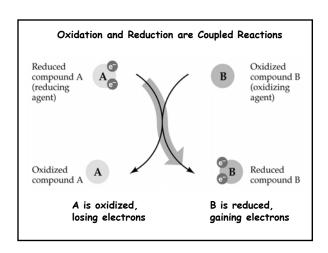
Microbes exhibit a great diversity in how they obtain the necessary resources (energy and carbon) to synthesize organic compounds.

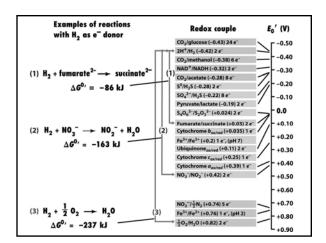
- Some obtain energy from light (phototrophs), while others use chemicals taken from the environment (chemotrophs).
- \blacksquare Many can utilized CO_2 as a carbon source (autotrophs) and others require at least one organic nutrient as a carbon source (heterotrophs).

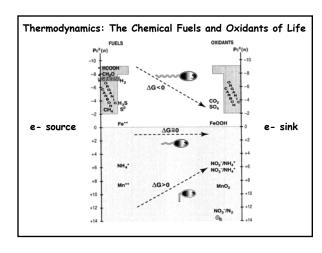


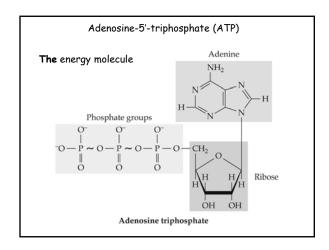


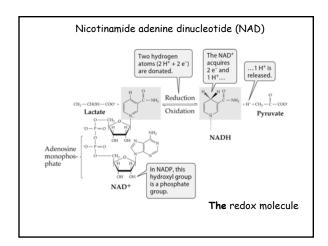
Depending upon the <u>energy source AND</u> the <u>carbon source</u>, microbes have **four** possible nutritional modes:

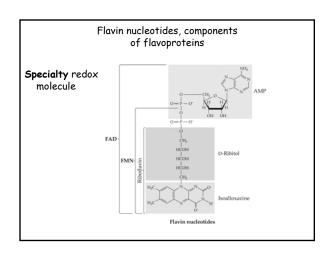

- 1. Photoautotrophs: Use light energy to synthesize organic compounds from CO_2 Includes the cyanobacteria. (Actually all photosynthetic eukaryotes fit in this category.)
- 2. <u>Chemoautotrophs</u>: Require only CO_2 as a carbon source and obtain energy by oxidizing inorganic compounds. This mode of nutrition is unique only to certain microbes.
- 3. <u>Photoheterotrophs</u>: Use light to generate ATP from an organic carbon source. This mode of nutrition is unique only to certain microbes.
- 4. <u>Chemoheterotrophs</u>: Must obtain organic molecules for energy and as a source of carbon. Found in many bacteria as well as most eukaryotes.

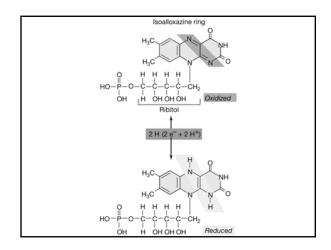


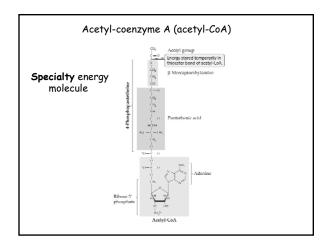

olic Menu		- donor	e- acceptor	C source	Organisms
emotrophs 📑	Lutolithotrophy				
		H ₂	O_2	CO_2	Hydrogen oxidizers
		$HS^{*}_{*}S_{2}^{0}S_{2}O_{3}^{-2}$	O_2	CO_2	Sulfur oxidizers
		Fe ⁻²	O_2	CO_2	Iron exidizers
		$\mathrm{Mn}^{\circ 2}$	O_2	CO_2	Manganese oxidizers
		$\mathrm{NH_4^*,NO_2^*}$	O_2	CO_2	Nitrifiers
		$HS^{\ast}_{\ast}S^{0}_{2}S_{2}O_{3}^{-2}$	NO _i	CO_2	Denitrifying/S-oxidizers
		H ₂	NO_{3}	CO_2	Hydrogen oxidizers
		H ₂	$\mathrm{S}^a\mathrm{SO}_k^{-c}$	CO_2	Sulfate Reducers (SRBs
		H_2	co_2	CO_2	Methanogens & Acetoger
-	leteroorganotro	phy			
		Org.C	O_2	Org.C	Aerobic Heterotrophy
		$\operatorname{Org} C$	NO ₃ °	Org.C	Denitrifyces
		Org.C	S^{0},SO_{k}^{-2}	Org.C	Sulfate Reducers (SRBs
		Org.C	Org.C	Org.C	Fermenters
-	dethylotrophy				
		CH _a (C-1's)	02,502	CH _a CO ₂ CO	Methane (C-1) oxidizers

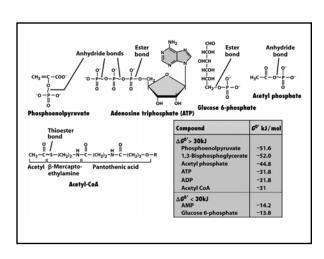


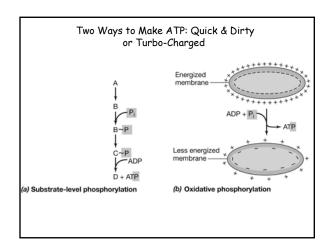

Redox Rxns:
$$H_2 \rightarrow 2 e^- + 2 H^+$$
Electron-donating half reaction
$$\frac{1}{2}O_2 + 2 e^- \rightarrow O^{2-}$$
Electron-accepting half reaction
$$2 H^+ + O^{2-} \rightarrow H_2O$$
Formation of water
$$Electron$$

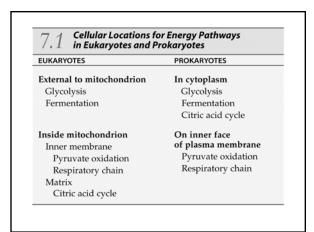

$$donor - H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
Redox Rxns: $H_2 \rightarrow H_2O$
Electron
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
Redox Rxns: $H_2 \rightarrow H_2O$

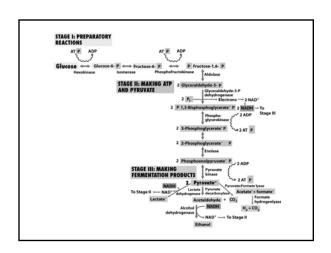


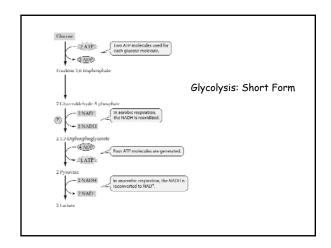


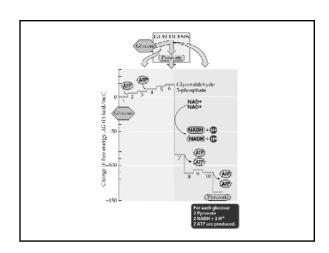


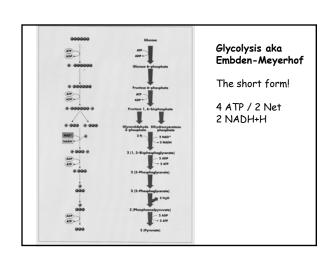


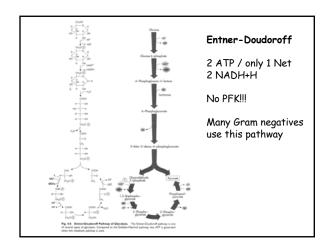


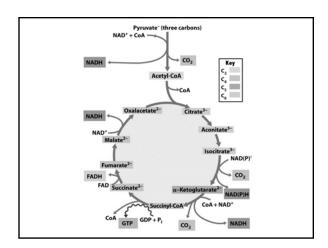


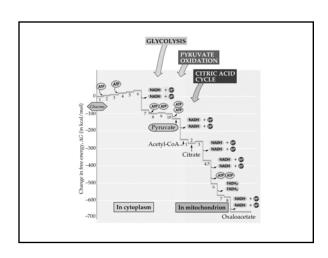


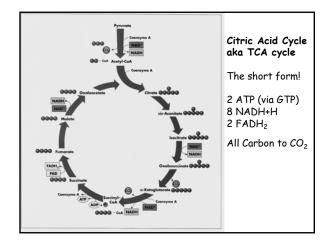


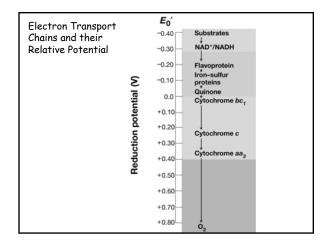


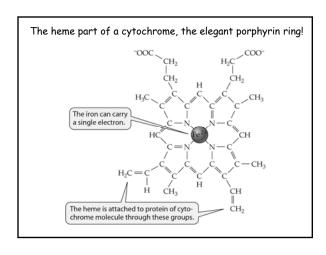


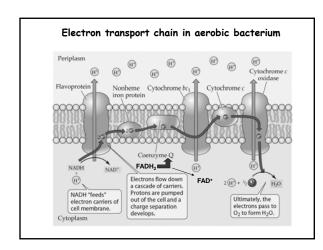


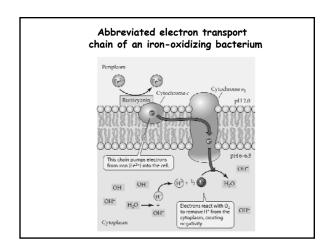


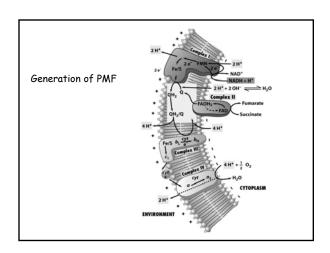


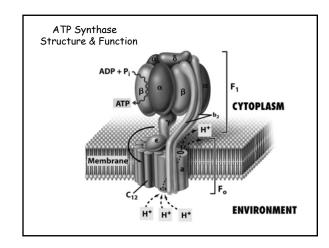


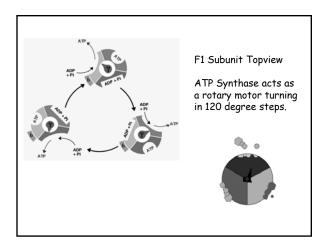


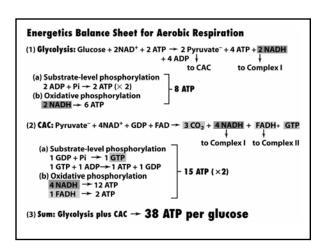




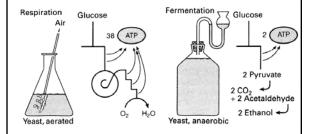


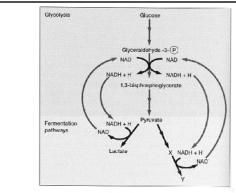


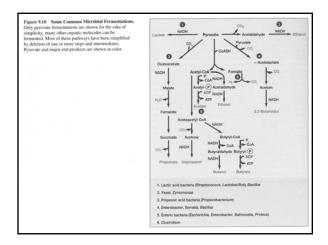


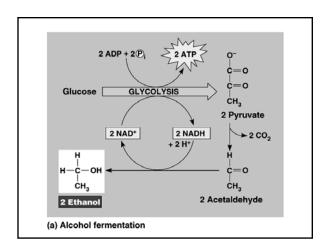


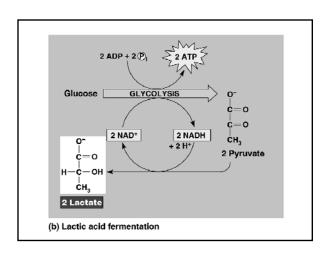
Fermentation - Key Features

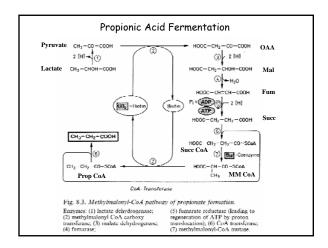

- $(1) \ \ Substrate-level \ phosphory lation \ is \ the \ rule*.$
- (2) Always anaerobic (even when some O_2 might be around).
- (3) No externally supplied terminal electron acceptor.

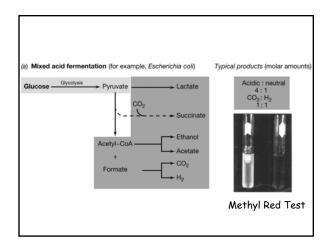

Many types.... 2 major themes

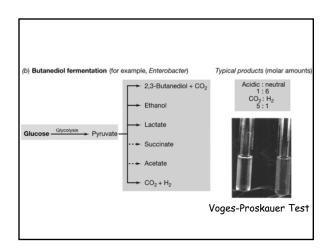

- (1) NADH+H+ gets oxidized to NAD+
- (2) Electron acceptor is usually **Pyruvate** or its derivative.

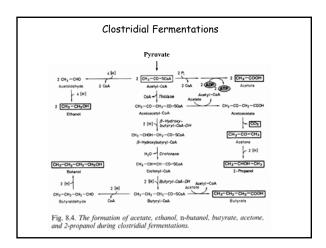

*Rules are always meant to be broken!

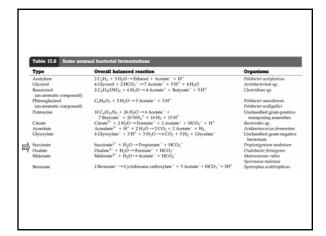

Pasteur Effect: ~20X more biomass when aerated

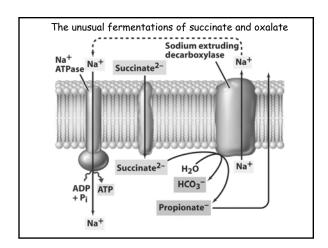


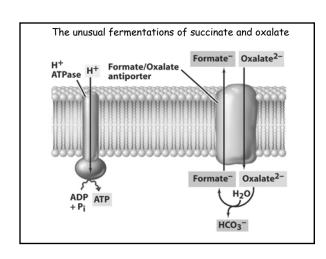












Type	Overall reaction ^e	Organisms
Alcoholic	Hexose → 2 Ethanol + 2 CO ₂	Yeast Zumomonas
Homolactic	Hexose → 2 Lactate" + 2 H*	Streptococcus Some Lactobacillus
Heterolactic	Hexose \rightarrow Lactate" + Ethanol + CO ₂ + H ⁺	Leuconostoc Some Lactobacillus
Propionic acid	Lactate ⁻ → Propionate ⁻ + Acetate ⁻ + CO ₂	Propionibacterium Clostridium propionicum
Mixed acid	Hesose → Ehanol + 2, 3-Butanediol ≠ Succinate ²⁻ + Lactate ⁻ + Acetate ⁻ + Fermate ⁻ + H ₂ + CO ₂	Enteric bacteria ^b Escherichia Selmonella Shigella Klebsiella Enterobacter
Butyric acid Butanol	Hexose → Butyrate ⁻ + Acetate ⁻ + H ₂ + CO ₂ Hexose → Butanol + Acetate ⁻ + Acetone + Ethanol + H ₃ + CO ₃	Clostridium butyricum Clostridium acetobutylicum
Caproate	Ethanol + Acetate + CO ₂ → Caproate + Butyrate + H ₂	Clostridium kluyveri
Homoacetogenic	Fructose \rightarrow 3 Acetate ⁻ + 3 H ⁺ 2 H ₂ O 4 H ₂ + 2 CO ₂ + H ⁺ \rightarrow Acetate ⁻ +	Clostridium aceticum Acetobacterium
Methanogenic	Acetate $^-$ + H ₂ O \rightarrow CH ₄ + HCO ₃ $^-$	Methanosaeta Methanosaecina
* Reactions are intended as an ov	review of the process and are not necessarily balanced. reducts. In particular, batanediol production is limited to only certain enteric bacteric	

Table 8.2	Examples of products generated during fermentation of glucose and the microorganism involved			
Туре	Nongaseous Product	Micro- organism		
Mixed acid	ethanol + acetate + lactate	Escherichia coli		
Butanediol (neutral)	2,3-butanediol + ethanol	Enterobacter aerogenes		
Alcoholic	ethanol	Zymomonas mobilis		
Homolactic	lactate	Lactobacillus acidophilus		
Heterolactic	lactate + ethanol	Lactobacillus brevis		
Butanol/ acetone	acetone + butanol	Clostridium butyricum		

