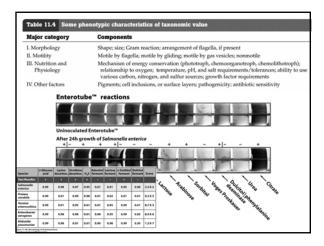


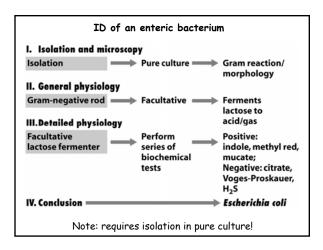
Microbial Taxonomy

Traditional taxonomy or the classification through **identification** and **nomenclature** of microbes, both "prokaryote" and eukaryote, has been in a mess – we were stuck with it for traditional reasons.

A "natural" taxonomy would be based on evolutionary relatedness: Thus, organisms in same "genus" (a collection of "species") would have similar properties in a fundamental sense.

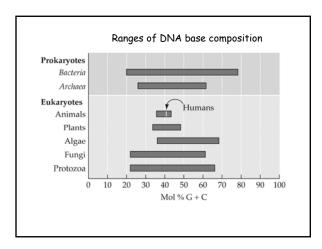

A natural taxonomy of macrobes has long been possible: Large organisms have many easily distinguished features (e.g., body-plans and developmental processes, that can be used to describe hierarchies of relatedness).

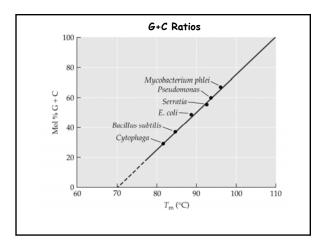
Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible.

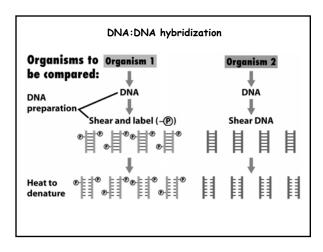

Recent advances in **molecular phylogeny** have changed this picture. We now have a relatively quantitative way to view **biodiversity**, in the context of phylogenetic maps or evolutionary trees.

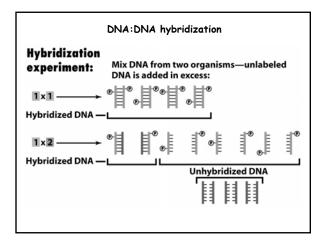
Slowly evolving molecules (e.g. rRNA) used for large-scale structure; "fast- clock" molecules for fine-structure.

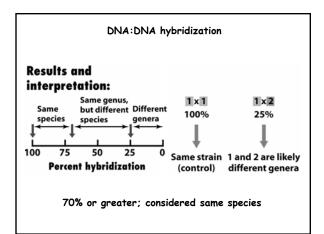
The literature language (e.g. "species") and formal nomenclature, however, remain solidly rooted in the tradition of Linnaeus at this time. (You have to call them something!)

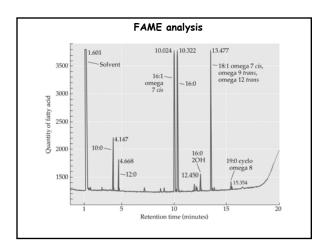


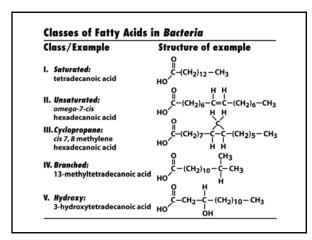


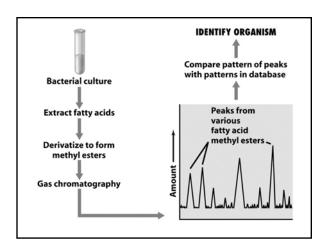


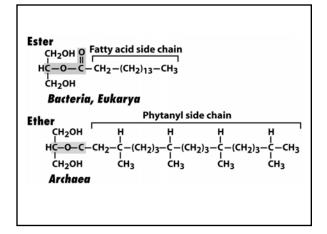


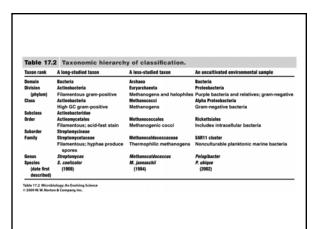












able 17.1 Hierarchical classification of the bacterium <i>Spirochaeta plicatilis</i>		
Taxon	Name	
Domain	Bacteria	
Phylum	Spirochaetes (vernacular name: spirochetes)	
Class	Spirochaetes	
Order	Spirochaetales	
Family	Spirochaetaceae	
Genus	Spirochaeta	
Species	plicatilis	

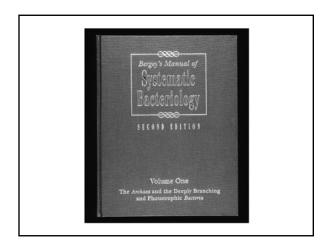
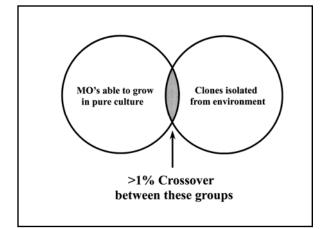


Table 11.6	Taxonomic ranks and numbers of known prokaryotic species ^a		
Rank	Bacteria	Archaea	Total
Domains	1	1	2
Phyla	25	4^a	29
Classes	34	9	43
Orders	78	13	91
Families	230	23	243
Genera	1227	79	1306
Species	6740	289	7029

^a Numbers represent validly named genera and species of *Bacteria* and *Archaea* as of 2005. The phyla category for *Archaea* includes the Korarchaeota and the Nanoarchaeota, not yet officially recognized phyla.

Source: Garrity, G.M., Libum, T.G., and Bell, J.A. 2005. Bergey's Manual of Systematic Bacteriology, 2d ed., Vol. 2, part A, pp159–220. Springer-Verlag, New York.



Taxonomy Summary

Classical physiological descriptions of microbes constitute a taxonomy, but do not provide relationships (except as might be inferred subjectively).

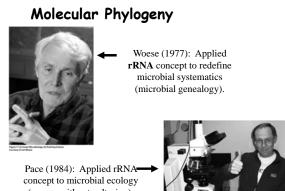
Methods such as G+C ratios, FAME, DNA-DNA hybridization establish relationships, but only if close, i.e., they are not sufficiently general to be broadly applicable.

All these methods require pure-cultivation of organisms for characterization, but we can't cultivate much of what is out there.

Importance of a Molecular Biological Approach

- **Traditional culturing** techniques isolate ~1% of the total bacteria in marine ecosystems, thereby severely underestimating diversity and community structure.
- Because nutrient-rich **culture media** have been historically used during enrichment procedures, bacteria which may be dominant in natural communities are selected against in favor of copiotrophic (weedy) bacteria.
- SSU rRNAs and their respective genes are excellent descriptors of microbial taxa based on phylogeny.

Stanier et al., 1976:


. the general course of evolution [for bacteria] will probably never be known, and there is simply not enough objective evidence to base their classification on phylogenetic grounds...

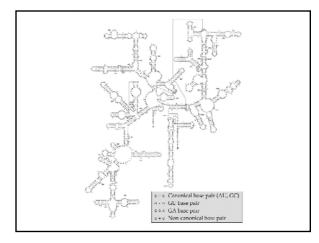
For these and other reasons, most modern taxonomists have explicitly abandoned the phylogenetic approach.

Regarding Molecular Phylogeny

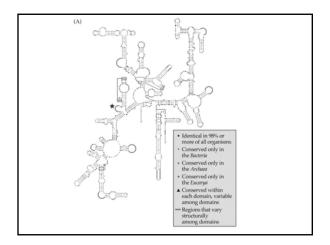
The Root of the Problem:

Unlike zoology and botany, microbiology developed without the knowledge of phylogenetic relationships among the organisms studied.

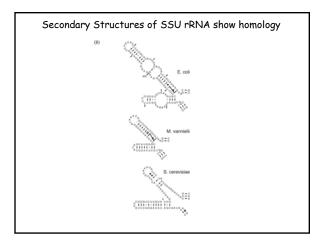
(census without culturing).

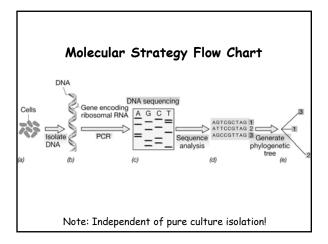


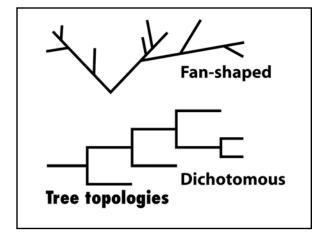
Why ribosomal RNAs?

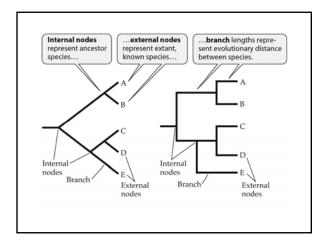

• Found among all living organisms (for 3.8 of the last 4.5 billion years). Integral part of protein synthesis machinery.

• Cell component analyses provide culture-independent means of investigating questions in microbial ecology (lack of morphology).

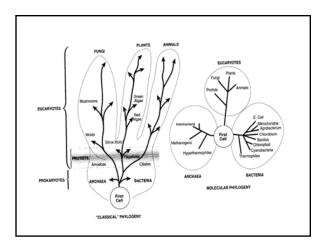

- rRNAs offer a type of sequence information that makes them excellent descriptors of an organism's evolutionary history.
- No detectable horizontal gene transfer, especially important for the bacteria and archaea.
- Large and growing database; RDP contains ~1.3x10⁶ SSU rRNAs.

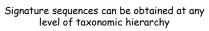


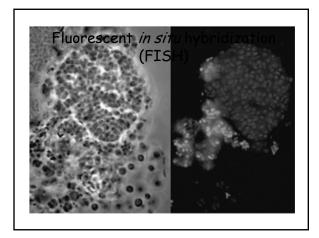




Organism	Sequence	Analysis	Estimating evolutionary distance E_{D} to map on
A	CGUAGACCUGAC		phylogenetic tree
в	CCUAGAGCUGGC		1 / 5
С	CCAAGACGUGGC	twelve; thus $\frac{3}{12} = 0.2$	5
D	GCUAGAUGUGCO		
(a) Sequen	ce alignment and analysi	s	
Evolutionar	y distance Corre	cted evolutionary distance	a de la constante de
E _D A	→ B 0.25	0.30	/ ZA
E _D A -	→ C 0.33	0.44	
E _D A -	→ D 0.42	0.61	03 023
E _D B -	→ C 0.25	0.30	S.S.8× +0.08→ B
E _D B -	→ D 0.33	0.44	0.15 C
-D B-		0.44	r
ED C-	→ D 0.33	0.44	⊢0.29







			Occurrence am	
Oligonucleotide signatures"	Approximate position ^b	Archaea	Bacteria	Eukarya
CACYYG	315	0	>95	0
AAACUCAAA	910	3	100	0
AAACUUAAAG	910	100	0	100
YUYAAUUG	960	100	<1	100
CAACCYYCR	1110	0	>95	0
UCCCUG	1380	>95	0	100
UACACACCG	1400	0	>99	100
CACACACCG	1400	100	0	0
⁴ Y, any pyrimidine; R, any purine. ^b Refer to Figure 11.11c for numberi ^c Occurrence refers to percentage of		in that contain tha	t sequence.	

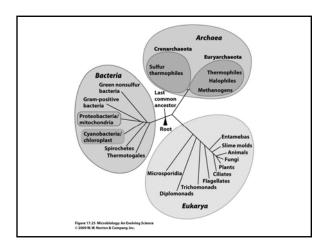
Take Home Message

- Phylogeny is right or wrong, we try to infer it the best we can.
- Taxonomy is useful or not, depending upon your point of view.
- Phylogeny <u>allows</u> us to ask testable questions, e.g., hypothesis testing.

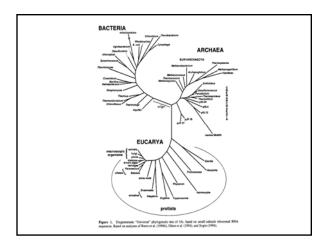
- microbial ecology relationships can now be truly examined

- relationships between MOs and their genes can be studied
- infer dynamics of sequence change (Rolex vs Timex)

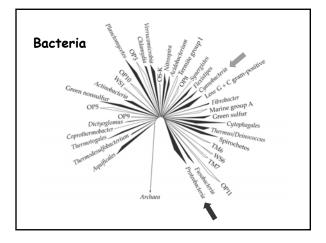
Inferring evolutionary relationships from a phylogenetic tree


-Key word is inference (not always correct!)

-Some lineages accumulate mutations faster than others - generation times and selective pressures differ.


So, molecular clocks are distorted ("soft watches").

-For this reason, mutation frequency cannot be calibrated to units of time. Tree can be calibrated to fossil record or geological evidence.


Some Lessons from the BIG TREE: Map of the Biological Record

Single origin for all life on Earth ...

- · Central Dogma intact.
- ATP and PMF are universal themes.
- Uniformity among chiral carbon compounds (sugars & AAs).
- Hot start origin...

General topology implies:

- Three "primary lines of evolutionary descent."
 The Eucarya "nuclear" lineage almost as old as other two.
 Prokaryotes split between Bacteria and Archaea.
 Shown for only a limited number of representative org's.
- Mitochondria and chloroplasts proven to be of bacterial origin.

Some Lessons from the BIG TREE: Map of the Biological Record


Evolutionary "clock" is NOT constant between different lineages

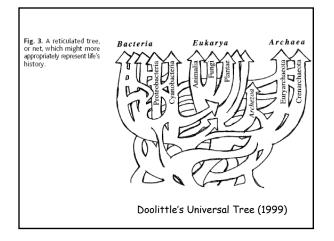
• Terminal nodes NOT all the same length, so not constant for all organisms either!

Endosymbionts sped up very fast (semi-autonomous)
 Eucarya – Fast clocks
 Archaea – Slow clocks

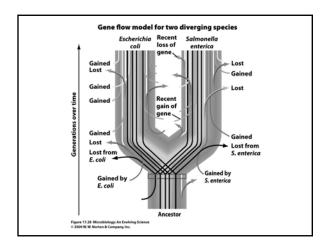
• Bacteria – Intermediate

Table 17.3 Thre	e domains of life.			
Characteristic	Traits of living organisms			
	All cells on Earth resemble eac	All cells on Earth resemble each other		
Chromosomal material RNA transcription Translation Protein Cell structure	Double-stranded DNA Common ancestral RNA poly Common ancestral rRNAs ar Common ancestral functions Aqueous cell compartment b	nd elongation factors al domains		
	Comparison of domains			
	Bacteria	Archaea	Eukaryotes	
	Archaea resemble bacteria			
Cell volume DNA chromosome DNA organization Gene organization Metabolism	1-100 μm ³ (usually) Circular (usually) Nucleoid Multigene operons Denitrification, N _s fixation, lit respiration, and fermentati		1–10 ⁴ µm ³ Linear Nucleus with membrane Single genes Respiration and fermentation	
Multicellularity	Simple			

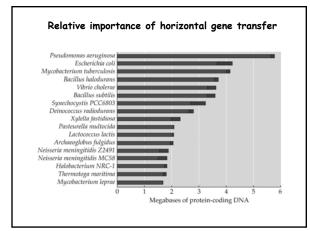
	domains of life.		
Characteristic	Traits of living organisms		
		Archaea resemble eukary	otes
Intron splicing	Introns are rare	Introns are common	
RNA polymerase	Bacterial	Eukaryotic form	
Transcription factors	Bacterial	Eukaryotic form	
Ribosome sensitivity to			
chloramphenicol,			
kanamycin, and			
streptomycin Translation initiator	Sensitive Formvlmethionine	Resistant	
Cell wall	Peptidoglycan	Methionine (except mitochondria use formylmethionin Pseudopeptidoglycan or other polymer; or protein S-I	
Cell Wall	Bacteria resemble eukaryotes and differ f		
Methanogenesis	No	Yes	No
Thermophilic growth	Up to 90°C	Up to 120°C	Up to 70°C
Photosynthesis	Many species; bacteriochlorophyll Proteorhodopsin derived from archea	Haloarchaea only; bacteriorhodopsin	Many species; chlorophyll (bacterial origin)
Chlorophyll light	Red and blue		Red and blue (chloroplasts of
absorption		solar spectrum)	bacterial origin)
Membrane lipids (major)	Ester-linked fatty acids	Ether-linked isoprenoid	Ester-linked fatty acids
Pathogens infecting			-
animals or plants	Many pathogens	No pathogens	Many pathogens

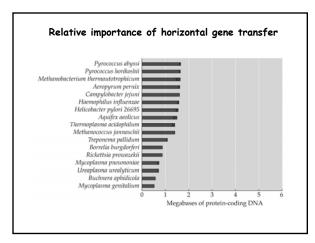


Horizontal gene transfer


This lateral flow of information across microbial taxa occurs via the transfer of genes by:

conjugation, transduction, and transformation.


Rem: These are one-way processes!



Some Lessons from the BIG TREE: Map of the Biological Record

What does genome sequencing and study of functional genomics add to our perspective?

• The central information processing machinery encompasses core genome.

Metabolic functions, that's when relationships get murky.
Endosymbiosis involves more than simply organelles, i.e., two-way transfer of genes with most going to the nucleus.
Mitochondria have been at it much longer than chloroplasts.

A Bit on the Evolution of Evolutionary Thought

A. Prior to the late 19th century, the concept of evolution was on the **evolutionary ladder**. Thus, we still deal in "higher and lower" eucaryotes (I try not to use these terms – they are dumb), "missing links," and "primitive" organisms.

B. In its milieu, *E. coli* is as highly evolved as are we. *E. coli* is **simple** (\sim 5x10⁶ bp genome), we are **complex** (\sim 3x10⁹ bps); complexity has nothing to do with *evolutionary advancement*.

C. Lineages evolve by diversification, not progression. !!!

D. There is no such thing as a *primitive* organism alive today. Simple, yes, but still a finely honed product of ~ 4 billion years under the selective hammer of the niches that it and its progenitors have occupied.

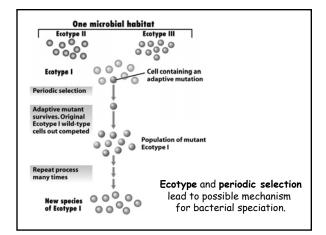

C value peredevi	TABLE 13.3 C values from eukaryot by size	ic organisms ranked
C-value paradox: Organism complexity	Species	C value (kb)
	Navicola pelliculosa (diatom)	35,000
oes not correlate to	Drosophila melanogaster (fruitfly)	180,000
conomo diza	Paramecium aurelia (ciliate)	190,000
genome size	Gallus domesticus (chicken)	1,200,000
	Erysiphe cichoracearum (fungus)	1,500,000
	Cyprinus carpio (carp)	1,700,000
	Lampreta planeri (lamprey)	1,900,000
	Bog constrictor (snake)	2,100,000
	Parascaris equorum (roundworm)	2,500,000
	Carcarias obscurus (shark)	2,700,000
	Rattus norvegicus (rat)	2,900,000
	Xenopus laevis (toad)	3,100,000
	Homo sapiens (human)	3,400,000
,	Nicotiana tabaccum (tobacco)	3,800,000
	Paramecium caudatum (ciliate)	8,600,000
	Schistocerca gregaria (locust)	9,300,000
	Allium cepa (onion)	18,000,000
	Coscinodiscus asteromphalus (diatom)	25,000,000
	Lilium formosanum (lily)	36,000,000
	Pinus resinosa (pine)	68,000,000
	Amphiuma means (newt)	84,000,000
	Protopterus aethiopicus (lungfish)	140,000,000
	Ophioglossum petiolatum (fern)	160,000,000
	Amoeba proteus (amoeba)	290,000,000
	Amoeba dubia (amoeba)	670,000,000
	Compiled by Li and Graur (1991) from Cavalier-S (1972), and other references. The C value for hum reference.	mith (1985), Sparrow et al. ans is highlighted for

Table 17.2Comparison of <i>E. coli</i> and its primate host species ^a			d its
Property	E. coli	Homo sapiens	Primates
Mol % G + C	48-52	42	42^{b}
16S–18S rRNA variability	>15 bases	?	<16°
DNA/DNA reassociation	>70%	98.6% ^d	>70% ^e

^aAdapted from J. 1. Staley, ASM News, 1999. ^bValue for all primates. ^dComparison between *Homo sapiens* and chimpanzee. ^cComparison between *Homo sapiens* and lemurs.

