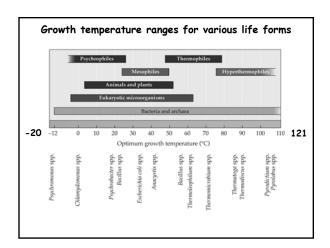
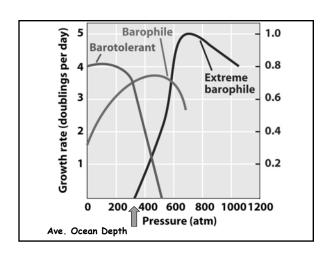
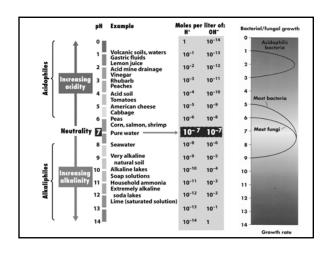

Microbial Growth

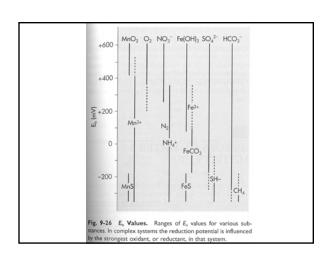

Environmental Forcing Functions:

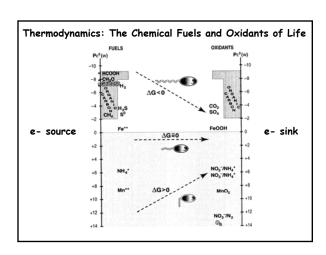
- Temperature: Psychrophile, Mesophile, Thermophile & Hyperthermophile Cardinal Temps: Min*, Max, & Optimal* Q₁₀ Rule: 10°C rise will double the growth rate*
- Pressure: Barophiles (Most are also psychrophiles!)
 Found only in the deep ocean....so far



	aea
Species	Range (°C
Psychrophiles	
Cytophaga psychrophila	4-20
Bacillus insolitus	<0-25
Aquaspirillum psychrophilum	2-26
Mesophiles	
Escherichia coli	10-40
Lactobacillus lactis	18-42
Bacillus subtilis	22-40
Pseudomonas fluorescens	4-40
Thermophiles	
Bacillus thermoleovorans	42-75
Thermoleophilum album	45-70
Thermus aquaticus	40-79
Chloroflexus aurantiacus	45-70
Hyperthermophiles (Archaea)	
Hyperthermus butylicus	85-108
Methanothermus fervidus	65-97
Pyrodictium occultum	80-110
Thermococcus celer	70-95

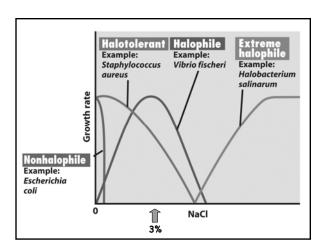



Microbial Growth


Environmental Forcing Functions:

- pH: acidophiles & alkaliphiles cytoplasm still near neutral
- \bullet Eh: available electron donors & terminal electron acceptors

affects the chemistry of the environment



Microbial Growth

Environmental Forcing Functions:

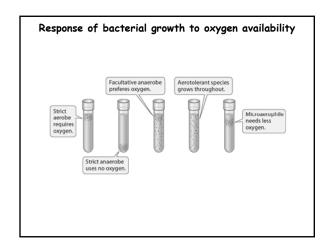
- Salt: Halophiles
 Compatible solutes: amino acid derivatives
 (e.g., proline & glycine), sugars, & alcohols.
- Water Activity: Xerophiles (live in very dry habitats)
 Rem: All microbes are osmotrophs, must use organic material in solution!
- Oxygen Usage: aerobe, facultative (an)aerobe, microaerophile, obligate anaerobe
 DeTox enzymes: Catalase, Peroxidase, SOD

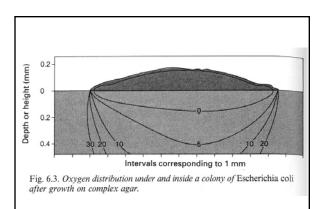
Compatible solutes

1. Amino acid—type and related solutes:

Glycine betaine CH_3 $H_3C - N^+ - CH_2 - COO^-$

ĊH₃


Ectoine


Dimethylsulfoniopropionate

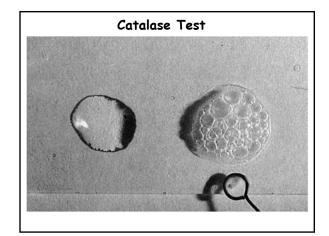
$$H_3C - \stackrel{C}{\underset{+}{\stackrel{}}{\stackrel{}}} - CH_2CH_2C - O^-$$

Compatible solutes 3. Alcohol-type solutes: Glycerol Mannitol CH₂OH CH₂OH CHOH HO-C-H CH₂OH HO-C-H H-C-OH H-C-OH CH₂OH

Туре	Organisms	a _w
Nonhalophiles	Aquaspirillum and Caulobacter	1.00
Marine forms	Pseudomonads and Alteromonas	0.98
Moderate halophiles	Vibrio species and gram-positive cocci	0.91
Extreme halophiles	Halobacterium and Halococcus	0.75

(normal atmospheric form)	³ O ₂	ó—ó	1	(1)
Singlet oxygen Nasty!	¹ O ₂	Ó—Ó	\bigcirc	() ()
Superoxide free radical	O_2^-	Ö—Ö	\bigcirc	\bigcirc

4 electron reduction of O_2 to water


 $O_2 + e^- \rightarrow O_2^-$ Superoxide $O_2^- + e^- + 2 H^+ \rightarrow H_2O_2$ Hydrogen peroxide $H_2O_2 + e^- + H^+ \rightarrow H_2O + OH \cdot$ Hydroxyl radical $OH \cdot + e^- + H^+ \rightarrow H_2O$ Water

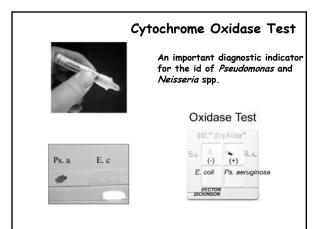

Overall: $O_2 + 4 e^- + 4 H^+ \rightarrow 2 H_2 O$

Table 9-6 Bacterial Enzymes that Protect the Cell Against Toxic Forms of Oxygen Microorganism Catalase Superoxide Dismutase Aerobe + + + Facultative anaerobe + + Microaerophile - + Obligate anaerobe - -

(a) Catalase:

$$H_2O_2 + H_2O_2 \rightarrow 2 H_2O + O_2$$

(b) Peroxidase:
 $H_2O_2 + NADH + H^+ \rightarrow 2 H_2O + NAD^+$
(c) Superoxide dismutase:
 $O_2^- + O_2^- + 2 H^+ \rightarrow H_2O_2 + O_2$
(d) Superoxide dismutase/catalase in combination:
 $4 O_2^- + 4 H^+ \rightarrow 2 H_2O + 3 O_2$
(e) Superoxide reductase:
 $O_2^- + 2 H^+ + cyt c_{reduced} \rightarrow H_2O_2 + cyt c_{oxidized}$

