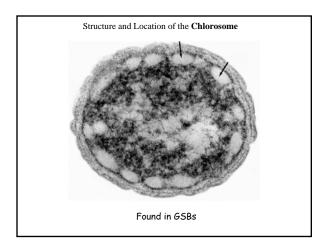
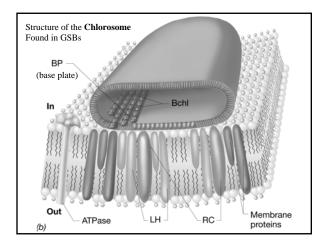
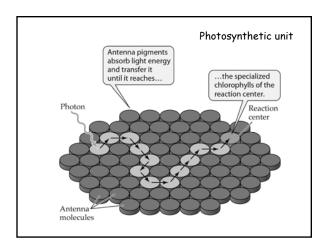
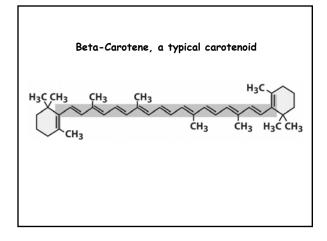


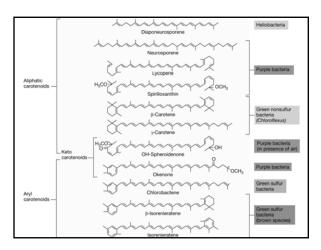
		Bacteriochlorophyll Structur						es
Pigment/Absorption maxima (in vivo)	R1	R2	R ₃	R4	R5	Ró	R7	
Bchl ø (purple bacteria)/ 805,830-890	_C_CH3 □ 0	-CH3 ^b	CH2CH3	CH3	_с_о_сн ₃	P/G	у ^а —н	H3C-
Bchl b (purple bacteria)/ 835-850, 1020-1040	_с_сн ₃	—сн ₃ ¢	=CCH3 H	—сн ₃	COCH3 0	P	—н	
Bchl c (green sulfur bacteria)/745-755	н —С—СН3	-CH3	C ₂ H ₅ C ₃ H ₇ ^d	C2H5 CH3	—н	F	-CH3	HH CH2 CH2 HR
Bchl cg (green nonsulfur bacteria)/740	н _с_снз	-CH3	-C ₂ H ₅	CH3	—н	5	-CH3	Г О R ₆ ^а р, Phytyl ester (С ₂₀ Н ₁₉ О—): F,
Bchl d (green sulfur bacteria)/705–740	н сснз он	CH3	C ₂ H ₅ C ₃ H ₇ C ₄ H ₉	—С2H5 —СН3	⊣н	F	—н	farnesyl ester (C15H25O-); Gg. geranylgeraniol ester (C10H17O- S, stearyl alcohol (C18H37O-). ^b No double bond between C3 and C4; additional H atoms are in
Bchl e (green sulfur bacteria)/719–726	н _с_сн ₃ он	_с_н Ш о	C ₂ H ₅ C ₃ H ₇ C ₄ H ₉	-C2H5	—н	F	-CH3	positions C3 and C4. ^C No double bond between C3 and C4; an additional H atom is in position C3.
Bchl g (heliobacteria)/ 670, 788	н _с=сн ₂	—сн ₃ 6	C2H5	—СН3	-с-о-снз	F	—н	^d Bacteriochlorophylls c, d, and e consist of isomeric mixtures with the different substituents on R ₃ as shown.

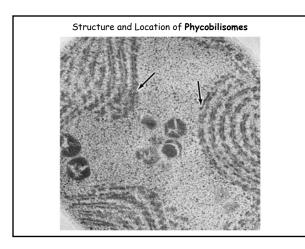


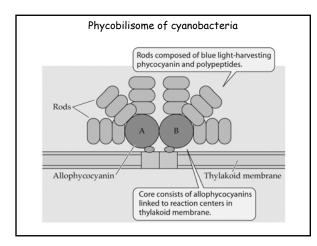


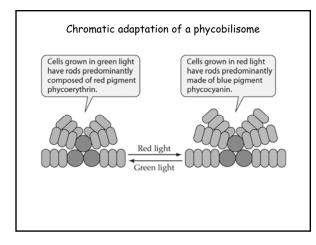

	ble 9.1 Some general properties of the various photosynthetic bacteria						
	Nonsulfur Purple Bacteria	Purple Sulfur Bacteria	Green Sulfur Bacteria	Cyano- bacteria	Helio- bacteria		
Source of							
reducing power (e ⁻)	H ₂ , reduced organic	H_2S	H_2S	H ₂ O	Lactate, organic		
Oxidized							
product	Oxidized organic	SO4 ²⁻	SO4 ²⁻	O ₂	Oxidized organic		
Source of					0		
carbon	CO ₂ or	60	60	60	Testate		
	organic	CO ₂	CO ₂	CO ₂	Lactate pyruvate		
Heterotrophic							
growth	Common	Limited ^a	Limited ^a	Limited ^a	Required		










able 9.2 The bacteriochlorophyll present in photosynthetic bacteria and primary acceptors involved in energy conserving reactions					
	Electron Donor	Electron Acceptor			
Purple nonsulfur bacteria	Bacteriochlorophyll a and b	Bacteriopheophytin $a, {\rm Q}_{\rm A}, {\rm and} {\rm Q}_{\rm B}$			
Green sulfur bacteria	Bacteriochlorophyll c, d, and e	Bacteriopheophytin a and FeS-protein			
Cyanobacteria photosystem I	Chlorophyll a	Chlorophyll a and FeS-protein			
Cyanobacteria photosystem II	Chlorophyll a	Pheophytin <i>a</i> , Q _A , Q _B , and plastoquinones			
Heliobacteria	Bacteriochlorophyll g	Bacteriochlorophyll c and FeS-protein			

