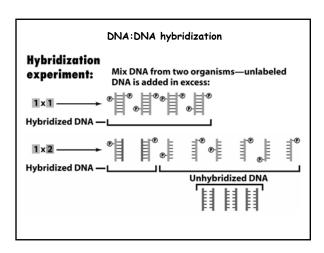
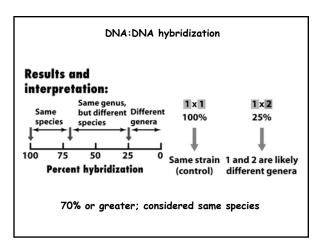
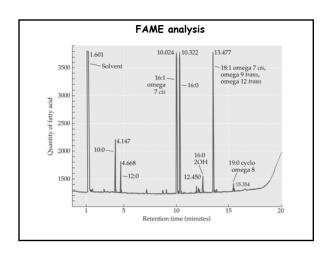
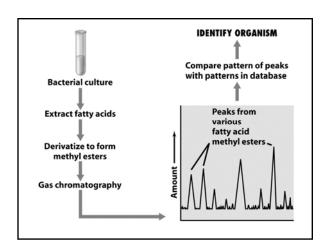
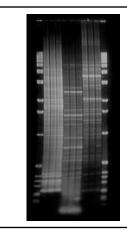

Microbial Taxonomy $Traditional\ taxonomy\ or\ the\ classification\ through\ \textbf{identification}$ and nomenclature of microbes, both "prokaryote" and eukaryote, has been in a mess – we were stuck with it for traditional reasons. A "natural" taxonomy would be based on evolutionary relatedness: Thus, organisms in same "genus" (a collection of "species") would have similar properties in a fundamental sense. A natural taxonomy of macrobes has long been possible: Large organisms have many easily distinguished features (e.g., body-plans and developmental processes, that can be used to describe hierarchies of relatedness). Microbes usually have few distinguishing properties that relate them, so a hierarchical taxonomy mainly has not been possible. Recent advances in molecular phylogeny have changed this picture. We now have a relatively quantitative way to view biodiversity, in the context of phylogenetic maps or evolutionary trees. Slowly evolving molecules (e.g. rRNA) used for large-scale structure; "fast- clock" molecules for fine-structure. The literature language (e.g. "species") and formal nomenclature, however, remain solidly rooted in the tradition of Linnaeus at this time. (You have to call them something!) Table 11.4 Son Major category Shape: size: Gram reaction; arrangement of flagella, if present Motile by flagella; motile by gliding; motile by gas vesicles; nonmotile Mechanism of energy conservation (phototroph; chemoorganotroph, chemolithotroph); relationship to oxygen; temperature, pH; and salt requirements/loterances; ability to use various carebon, nitrogen, and sulfur sources; growth factor requirements Pigments; cell inclusions, or surface layers; pathogenicity; antibiotic sensitivity I. Morphology II. Motility III. Nutrition and Physiology IV. Other factors



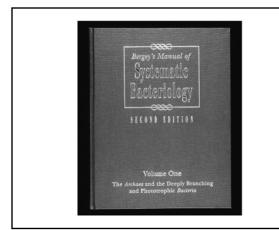








Classes of Fatty Acids in Bacteria Class/Example Structure of example I. Saturated: tetradecanoic acid II. Unsaturated: omega-7-cis hexadecanoic acid III. Cyclopropane: cis 7, 8 methylene hexadecanoic acid IV. Branched: 13-methyltetradecanoic acid V. Hydroxy: 3-hydroxytetradecanoic acid


REP PCR Fingerprinting

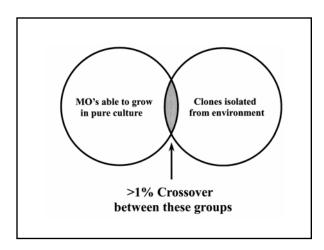
Lanes represent: Strains RL1, ES1, & ES2

- Three different types of PCR based genomic fingerprinting methods. Collectively known as **REP PCR**.
- Minimal genetic variability shown among three strains of ironoxidizing bacteria.

able 17.	Hierarchical classification of the bacterium Spirochaeta plicatilis
Taxon	Name
Domain	Bacteria
Phylum	Spirochaetes (vernacular name: spirochetes
Class	Spirochaetes
Order	Spirochaetales
Family	Spirochaetaceae
Genus	Spirochaeta
Species	plicatilis

Table 11.6	Taxonomic ranks and numbers of known prokaryotic species ^a			
Rank	Bacteria	Archaea	Total	
Domains	1	1	2	
Phyla	25	4^a	29	
Classes	34	9	43	
Orders	78	13	91	
Families	230	23	243	
Genera	1227	79	1306	
Species	6740	289	7029	
Archaea as of 20	resent validly named 105. The phyla category rchaeota, not yet official	for Archaea includes th		

Taxonomy Summary


Classical physiological descriptions of microbes constitute a taxonomy, but do not provide relationships (except as might be inferred subjectively).

Methods such as G+C ratios, FAME, DNA-DNA hybridization, or REP PCR establish relationships, but only if close, i.e., they are not sufficiently general to be broadly applicable.

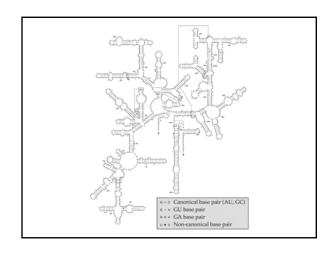
All these methods require pure-cultivation of organisms for characterization, but we can't cultivate much of what is out there.

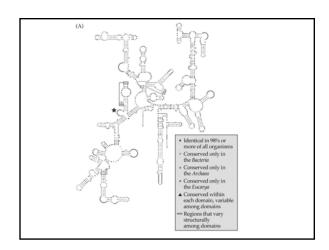
Importance of a Molecular Biological Approach

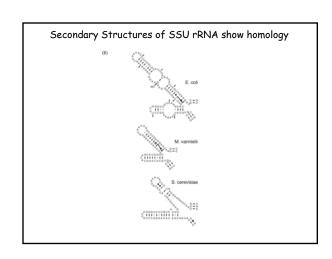
- Traditional culturing techniques isolate ~1% of the total bacteria in marine ecosystems, thereby severely underestimating diversity and community structure.
- Because nutrient-rich culture media have been historically used during enrichment procedures, bacteria which may be dominant in natural communities are selected against in favor of copiotrophic (weedy) bacteria.
- SSU rRNAs and their respective genes are excellent descriptors of microbial taxa based on phylogeny.

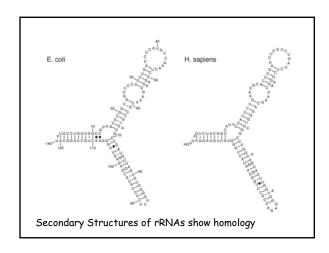
Regarding Molecular Phylogeny

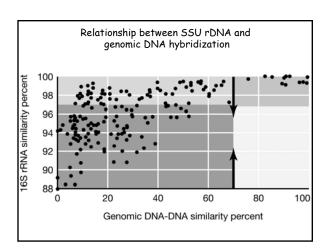
The Root of the Problem: Unlike zoology and botany, microbiology developed without the knowledge of phylogenetic relationships among the organisms studied.

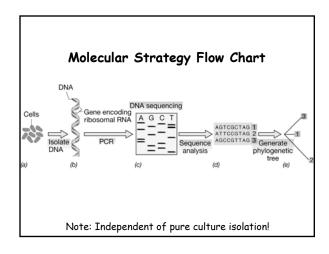

- •Milestone #1: Zuckerkandl and Pauling (1965) "Semantides" (i.e., molecules as documents of evolutionary history).
- •Milestone #2: Pace (1986) Applied phylogeny concept to microbial ecology's need to take a census.
- Milestone #3: Woese (1987) Applied phylogeny concept to redefine microbial systematics or the need to understand microbial genealogy.

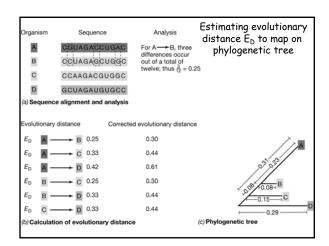

... the general course of evolution [for bacteria] will probably never be known, and there is simply not enough objective evidence to base their classification on phylogenetic grounds... For these and other reasons, most modern taxonomists have explicitly abandoned the phylogenetic approach.

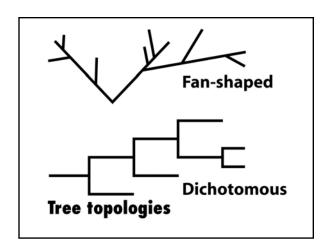

(Stanier et al., 1976)

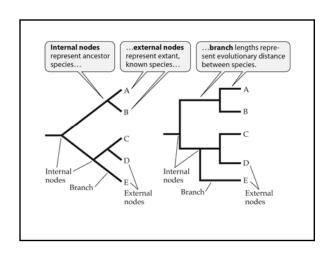

Why ribosomal RNAs?

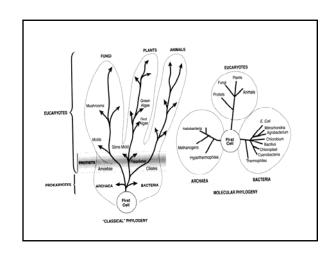

- Found among all living organisms (for 3.8 of the last 4.5 billion years). Integral part of protein synthesis machinery.
- Cell component analyses provide culture-independent means of investigating questions in microbial ecology (lack of morphology).
- rRNAs offer a type of sequence information that makes them excellent descriptors of an organism's evolutionary history.
- No detectable horizontal gene transfer, especially important for the prokaryotes.
- \bullet Large and growing database; RDP contains ~100K SSU rRNAs.

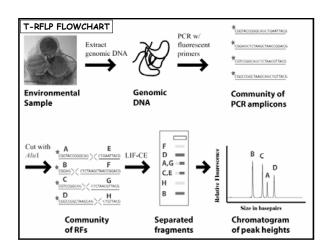


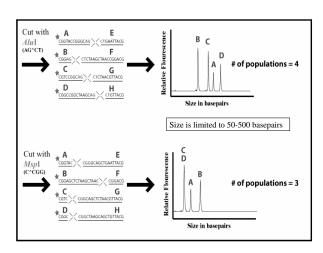


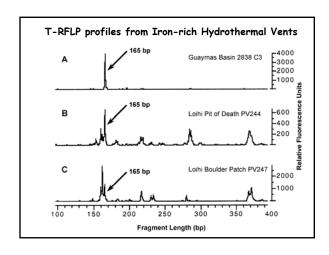


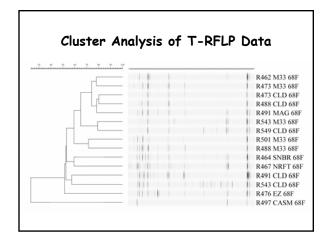


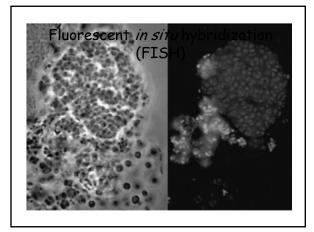




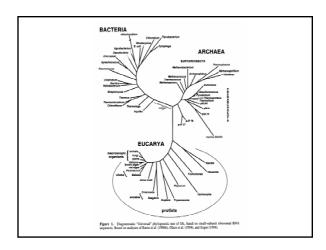








CACYYG 315 0 >95 0 AAACUCAAA 910 3 100 0 AAACUCAACA 910 100 0 100 YUYAAUUG 960 100 <1 100 CACACCYYCR 1110 0 >95 0 UCCCUG 1380 >95 0 100 UCCCUG 1400 0 0 >99 100 CACACACCY 1400 0 0 >99 100 CACACACCY 1400 100 0 0 0 0 CACACACCY 1400 100 0 0 0 0 CACACACCY 1400 100 0 0 0 0				Occurrence am	ong ^c
AAACUCAAA 910 3 100 0 AAACUCAAAG 910 100 0 100 AAACUCAAAG 910 100 0 100 CAACCYCR 1110 0 0 >95 0 CAACCYCR 1110 0 0 >95 0 UACACACCC 1380 >95 0 100 UACACACCC 1400 0 0 >99 100 CACACACCC 1400 100 0 0	Oligonucleotide signatures	Approximate position	Archaea	Bacteria	Eukarya
AAACUUAAAG 910 100 0 100 YUVAAUUG 960 100 <1 100 CAACCYYCR 1110 0 >95 0 UCCCUG 1880 >95 0 100 UCCCUG 1880 >95 0 100 UCCCCG 1400 0 >99 100 CACACACCG 1400 100 0 0 CACACACCCG 1400 100 0 0 CACACACCCC 1400 100 0 0 CACACACCCC 1400 100 0 0	CACYYG	315	0	>95	0
YUYAAUUG 960 100 <1 100 CAACCYYCR 1110 0 >95 0 0 UCCCUG 1380 >95 0 100 UACACACCG 1400 0 >99 100 CACACACCG 1400 100 0 0 CACACACCG 1400 100 0 0 **Refer to Figure 11.11: for numbering scheme of 165 rRNA.**	AAACUCAAA	910	3	100	0
CAACCTYCR 1110 0 >95 0 UCCCUG 1389 >95 0 100 UACACACACCG 1400 0 >99 100 CACACACCG 1400 100 0 CACACACCCG 1400 100 0 V. any purine. Refer to Figure 11.11: for numbering scheme of 165 rRNA.	AAACUUAAAG	910	100	0	100
UCCCUG 1380 >>5 0 100 UACACACCG 1400 0 >>99 100 CACACACCG 1400 100 0 0 CACACACCCG 1400 100 0 0 'Y. any printine. Rany purine. 'Refer to Figure 11.11: for numbering scheme of 165 rRNA.	YUYAAUUG	960	100	<1	100
UACACACCG 1400 0 >99 100	CAACCYYCR	1110	0	>95	0
CACACACCG 1400 0 0 0 'Y. any pyrimidine: R. any purine. Refer to Figure 11.11: for numbering scheme of 165 rRNA.	UCCCUG	1380	>95	0	100
Y, any pyrimidine; R, any purine. Refer to Figure 11.11c for numbering scheme of 16S rRNA.	UACACACCG	1400	0	>99	100
Refer to Figure 11.11c for numbering scheme of 16S rRNA.	CACACACCG	1400	100	0	0
	Refer to Figure 11.11c for numberi		ain that contain tha	t sequence.	

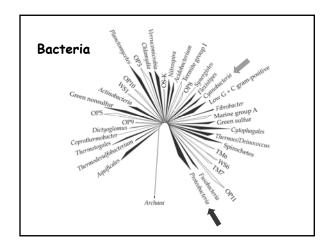


Take Home Message

- Phylogeny is right or wrong, we try to infer it the best we can.
- Taxonomy is useful or not, depending upon your point of view.
- Phylogeny <u>allows</u> us to ask testable questions, e.g., hypothesis testing.
 - microbial ecology relationships can now be truly examined
 - relationships between MOs and their genes can be studied
 - infer dynamics of sequence change (Rolex vs Timex)

Characteristic	Bacteria	Archaea	Eukarya
Morphological and Genetic			
Prokaryotic cell structure	Yes	Yes	No
DNA present in covalently closed and circular form	Yes	Yes	No
Histone proteins present	No	Yes	Yes
Membrane-enclosed nucleus	Absent	Absent	Present
Cell wall	Muramic acid present	Muramic acid absent	Muramic acid absent
Membrane lipids	Ester-linked	Ether-linked	Ester-linked
Ribosomes (mass)	706	708	805
Initiator tRNA	Formylmethionine	Methionine	Methionine
Introns in most genes	No	No	Yes
Operons	Yes	Yes	No
Capping and poly-A tailing of mRNA	No	No	Yes
Plasmids	Yes	Yes	Rare
Ribosome sensitivity to diphtheria toxin	No	Yes	Yes
RNA polymerases (see Figure 11.19)	One (4 subunits)	Several (8-12 subunits each)	Three (12-14 subunits each)
Transcription factors required (Section 7.11)	No	Yes	Yes
Promoter structure (@DoSections 7.10 and 7.11)	-10 and -35 sequences (Pribnow box)	TATA box	TATA box
Sensitivity to chloramphenicol, streptomycin, and kanamycin	Yes	No	No
Note that for many features only particular representatives within a doma Environmental genomics studies of prokaryotes in marine waters strongly			

Characteristic	Bacteria	Archaea	Eukarya
Physiological/Special Structures			
Methanogenesis	No	Yes	No
Dissimilative reduction of S ⁰ or SO ₄ ²⁻ to H ₂ S, or Fe ³⁺ to Fe ²⁺	Yes	Yes	No
Nitrification	Yes	Nob	No
Denitrification	Yes	Yes	No
Nitrogen fixation	Yes	Yes	No
Chlorophyll-based photosynthesis	Yes	No	Yes (in chloroplasts
Rhodopsin-based energy metabolism	Yes	Yes	No
Chemolithotrophy (Fe, S, H ₂)	Yes	Yes	No
Gas vesicles	Yes	Yes	No
Synthesis of carbon storage granules composed of	Yes	Yes	No
poly-β-hydroxyalkanoates			
Growth above 80° C	Yes	Yes	No
Growth above 100°C	No	Yes	No
8 Note that for many features only particular representatives within a doma	in show the property.		
Environmental genomics studies of prokaryotes in marine waters strongly	suggest that nitrilying Arch	anz exist (COS Section 18.6).	


Some Lessons from the BIG TREE: Map of the Biological Record

Single origin for all life on Earth...

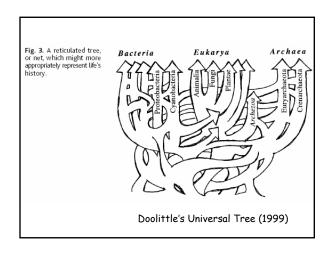
- Central Dogma intact.
- ATP and PMF are universal themes.
 Uniformity among chiral carbon compounds (sugars & AAs).
- Hot start origin...

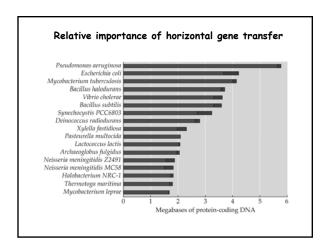
General topology implies:

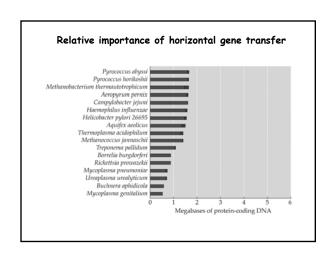
- Three "primary lines of evolutionary descent."
 The Eucarya "nuclear" lineage almost as old as other two.
 Prokaryotes split between Bacteria and Archaea.
 Shown for only a limited number of representative org's.
 Mitochondria and chloroplasts proven to be of bacterial origin.

Some Lessons from the BIG TREE: Map of the Biological Record

Evolutionary "clock" is NOT constant between different lineages


- \bullet Terminal nodes NOT all the same length, so not constant for all organisms either!
- Endosymbionts sped up very fast (semi-autonomous)
- Eucarya Fast clocks
- Archaea Slow clocks
- Bacteria Intermediate


Horizontal gene transfer


This lateral flow of information across microbial taxa occurs via the transfer of genes by:

conjugation, transduction, and transformation.

Rem: These are one-way processes!

Some Lessons from the BIG TREE: Map of the Biological Record

What does genome sequencing and study of functional genomics add to our perspective?

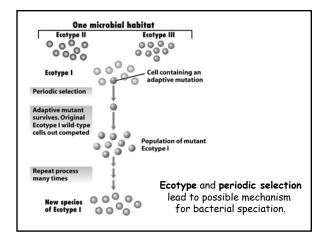
- The central information processing machinery encompasses core genome.
- Metabolic functions, that's when relationships get murky.
- Endosymbiosis involves more than simply organelles, i.e.,
- two-way transfer of genes with most going to the nucleus.

 Mitochondria have been at it much longer than chloroplasts.

A Bit on the Evolution of Evolutionary Thought

A. Prior to the late 19th century, the concept of evolution was on the **evolutionary ladder**. Thus, we still deal in "higher and lower" eucaryotes (I try not to use these terms - they are dumb), "missing links," and "primitive" organisms.

B. In its milieu, *E. coli* is as highly evolved as are we. *E. coli* is **simple** (\sim 5 x10⁶ bp genome), we are **complex** (\sim 3 x10⁹ bps); complexity has nothing to do with evolutionary advancement.


C. Lineages evolve by diversification, not progression. !!!

D. There is no such thing as a $\ensuremath{\textit{primitive}}$ organism alive today. $\textbf{Simple}\,,\, yes, but \, still \,\, a \,\, finely \,\, honed \,\, product \,\, of \,\, \sim 4 \,\, billion \,\, years$ under the selective hammer of the niches that it and its progenitors have occupied.

C	TABLE 13.3 C values from eukaryoti by size	ic organisms ranked
C-value paradox: Organism complexity	Species	C value (kb)
	Navicola pelliculosa (diatom)	35,000
does not correlate to	Drosophila melanogaster (fruitfly)	180,000
	Paramecium aurelia (ciliate)	190,000
genome size	Gallus domesticus (chicken)	1,200,000
	Erysiphe cichoracearum (fungus)	1,500,000
	Cyprinus carpio (carp)	1,700,000
	Lampreta planeri (lamprey)	1,900,000
	Boa constrictor (snake)	2,100,000
	Parascaris equorum (roundworm)	2,500,000
	Carcarias obscurus (shark)	2,700,000
	Rattus norvegicus (rat)	2,900,000
	Xenopus laevis (toad)	3,100,000
	Homo sapiens (human)	3,400,000
,	Nicotiana tabaccum (tobacco)	3,800,000
	Paramecium caudatum (ciliate)	8,600,000
	Schistocerca gregaria (locust)	9,300,000
	Allium cepa (onion)	18,000,000
	Coscinodiscus asteromphalus (diatom)	25,000,000
	Lilium formosanum (lily)	36,000,000
	Pinus resinosa (pine)	68,000,000
	Amphiuma means (newt)	84,000,000
	Protopterus aethiopicus (lungfish)	140,000,000
	Ophioglossum petiolatum (fern)	160,000,000
	Amoeba proteus (amoeba)	290,000,000
	Amoeba dubia (amoeba)	670,000,000

-	
-	
-	

Property	E. coli	Homo sapiens	Primates
Mol % G + C	48-52	42	42^b
16S–18S rRNA variability	>15 bases	?	<16 ^c
DNA/DNA reassociation	>70%	98.6% ^d	>70% ^e

