Microbiology: What is it? Study of organisms who are too small to be seen without a microscope. Study of small organisms or microorganisms. NOT just Bacteria! • Study of single celled organisms. The original cell biology! • Categories & subjects based on the type of organisms: (1) Viruses - Virology (acellular) (2a) Bacteria - Bacteriology (e.g. Prokaryotes) (2b) Archea - Archeaology? (already taken) (3) Fungi – Mycology (4) Algae - Phycology $(5)\, Protozoa - Protozoology$ WHAT IS A MICROORGANISM? "There is no simple answer to this question. The word 'microorganism' is not the name of a group of related organisms, as are the words 'plants' or 'invertebrates' or 'fish'. The use of the word does, however, indicate that there is something special about small organisms; we use no special word to denote large organisms or medium-sized ones. - Sistrom (1969) Reasons to study Microbiology: (1) Bacteria are part of us! E. coli lives in our gut and produces essential vitamins (e.g. K). (2) Infectivity & Pathogenicity; MO's have the ability to cause disease in compromised &/or heathy hosts. (3) MO's in the environment; Bioremediation or use of MO's to breakdown waste compounds like oil, pesticides, etc. Mineral cycling of elements like

(4) Applied Microbiology or use in agriculture and industry.

 $(5)\ Understand\ basic\ biological\ processes:\ Evolution,\ Ecology,\ Genetics,$

WHY STUDY MICROBIOLOGY?	
"The role of the infinitely small is infinitely large."	
- Louis Pasteur (1862)	
WE ARE NOT ALONE!	
"We are outnumbered. The average human contains about 10 trillion cells. On that average human are about 10 times as many microorganisms, or 100 trillion	
cellsAs long as they stay in balance and where they belong, [they] do us no harmIn fact, many of them provide some important services to us. [But] most are	
opportunists, who if given the opportunity of increasing growth or invading new territory, will cause infection."	
- Sullivan (1989)	
Natural Microbial Populations	
•Typical soil: ~10 ⁹ MO's per gram •Typical fresh water: ~10 ⁶ to 10 ⁷ MO's per ml •Open Ocean: ~10 ⁵ to 10 ⁶ MO's per ml	
•Complexity (soil): 10 ⁴ to 10 ⁵ different	
prokaryote-sized genomes per gram	

Prokaryotes: The unseen majority Whitman et al., 1998 PNAS

Table 5. Number and biomass of prokaryotes in the world

Environment	No. of prokaryotic cells, × 10 ²⁸	Pg of C in prokaryotes*
Aquatic habitats	12	2.2
Oceanic subsurface	355	303
Soil	26	26
Terrestrial subsurface	25-250	22-215
Total	415-640	353-546

^{*}Calculated as described in the text.

 $Pg = Petagram \ or \ 10^{15} grams$

Prokaryotes: The unseen majority

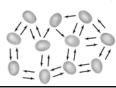
Whitman et al., 1998 PNAS

Plants:	Total C (Pg)	Total N (Pg)	Total P (Pg)
	560	12-20	1-2
Prokarvotes:	350-550	70-120	7-12

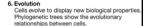
Take Home Message: Prokaryotes contain $60\ to\ 100\%$ the cellular carbon of all plants along with $\sim 10x$ the N and P of plants!

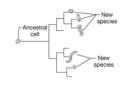
Hallmarks of cellular life

Metabolism
 Uptake of chemicals from the environment, their transformation within the cell, and elimination of wastes into the environment. The cell is thus an open system.


Reproduction (growth)
 Chemicals from the environment are turned into new cells under the direction of preexisting cells.

Hallmarks of cellular life 3. Differentiation Formation of a new cell structure such as a spore, usually as part of a cellular life cycle.




Communication
 Cells communicate or interact primarily by means of chemicals that are released or taken up.

Hallmarks of cellular life

Living organisms are often capable of self-propulsion.

Historical Perspective of Microbiology

1. Ancient History: (pre-1660's)
- The Age of Sanitation

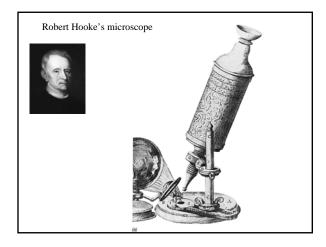
2. Early History: (1660's to 1850's)
- The Age of Discovery

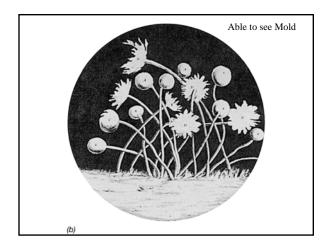
3. Microbiology's Renaissance: (1850's to 1920's)
- The Age of Diagnoses

4. Modern History: (1920's to Present)
- The Age of Biotechnology

Ancient History: (pre-1660's) - The Age of Sanitation

- Early civilizations (e.g., Crete, India, Pakistan, and Scotland) showed signs of using toilets and sewers dating back as far as 2800 BC.
- The first cities to use Water Pipes made of clay were in the Indus Valley of India around 2700 BC and in the palace of Knossos on Crete around 2000 BC. Metal pipes were used in Egypt as far back as 2450 BC.
- The Romans in 315 AD had public lavatories where people routinely socialized and conducted business. Rome also built elaborate aqueducts and public fountains and had an appointed water commissioner who was responsible for seeing that the water supply was kept clean. Lead was commonly used for Roman pipes and the subsequent fall of the Roman empire has been related by some to this practice.
- The Chinese as early as 589 AD produced toilet paper, while Europeans were still using moss and hay.

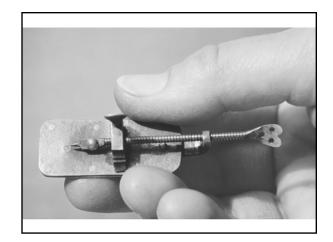

Roman Aqueduct: Sanitation Age

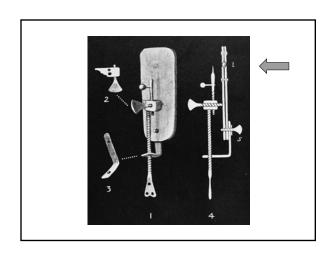


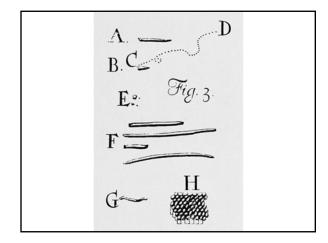
Early History: (1660's to 1850's) - The Age of Discovery

- 1665: Robert Hooke The first person to report seeing MO's under a microscope. He saw the cellular structure of plants and fungi, but his lens were apparently too poor to "see" bacteria.
- 1668: Francesco Redi The first serious attack on the idea of spontaneous generation was made. Redi's experiment proved maggots are not spontaneously produced in rotten meat.
- 1676: Anton van Leeuwenhoek The first to see and describe bacteria
 and their characteristic morphology. Publishes his drawings of "wee
 animalcules." Classic example of serendipity, he originally wanting better
 magnification to judge the quality of cloth.
- Takes 175 years before any major advancements are made:

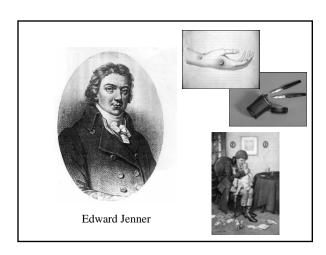
 - Technology of producing better microscopes and chemistry.
 Leeuwenhoek did not allow others to reproduce and verify his results.
 The nature of contagious disease is still paramount.
 The question of spontaneous generation lingers.







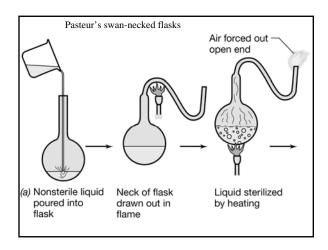
Showed that maggots came from flys.

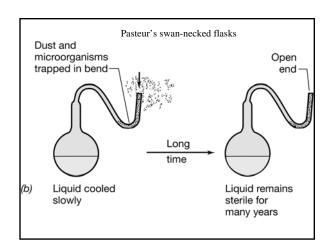


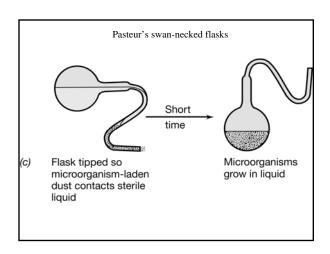
Early History: (1660's to 1850's) - The Age of Discovery

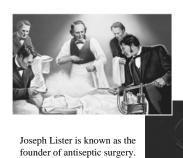
- 1798: Edward Jenner introduces the concepts of vaccination using cowpox material to prevent small pox, unfortunately many questions left unanswered.
- 1804-1806: The Lewis and Clark Expedition.

Variolation to Vaccination


- Variolation, immunization against smallpox, was a common practice before vaccination was common. This worked because the patient was exposed to a weak strain of smallpox, which did not kill, yet provided immunity to the disease.
- Edward Jenner discovered that cowpox could protect against smallpox, with a much lower incidence of complications than variolation.
- Pasteur actually coined the term vaccination to describe the technique.

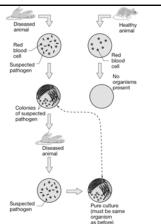

Microbiology's Renaissance: (1850's to 1920's) - The Age of Diagnoses


- 1859: Louis Pasteur settles the question of spontaneous generation once and for all with "simple" experiments using swan necked flasks. Microbiology becomes a truly scientific discipline as MO's are now known to have the same fundamental properties as other living organisms, aka Germ Theory.
- He contributed to the development of the first vaccines for the immunization against rabies, anthrax, and chicken cholera. He described the scientific basis for fermentation, wine-making, and the brewing of beer. And don't forget Pasteurization, which was originally used to prevent Napoleon's sailors from mutiny and the production of canned food for his armies!
- 1859: Charles Darwin publishes the Origin of the species.
- 1867: Joseph Lister Revolutionized medicine by introducing practices to limit the exposure to infectious MO's during surgery. Developed antiseptic methods for preventing infection using phenol (toxic!) to treat wounds.



Louis Pasteur

Microbiology's Renaissance: (1850's to 1920's) - The Age of Diagnoses


- 1876: Robert Koch Established the relationship between MO's and
 infectious disease. Determined Koch's postulates. Discovered causative
 agent for anthrax, tuberculosis, and cholera. His discoveries, in combination
 with those of Pasteur, established the Germ Theory of disease.
- 1881: Paul Ehrlich (working in Koch's lab) introduces vital staining with methylene blue and the visualization of bacteria is greatly improved. Later credited for early work with chemotherapy (chemicals to treat disease).
- 1882: Walter Hesse (and wife Fannie) uses Agar as solid growth medium.
- 1884: Hans Christian Gram develops a differential staining method, which exploits the difference between two basic variations in cell wall structure and is still essential in the classification of bacteria.
- 1884: Mark Twain writes Huckleberry Finn. Koch's Postulates are published.
- 1887: Richard Petri describes the utility of the Petri dish.

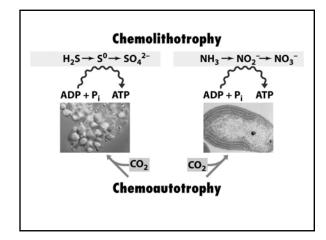
Robert Koch

Koch's Postulates:

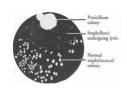
- (1) The suspected pathogenic organism should be present in all cases of disease and absent from healthy animals.
- (2) The suspected organism should be grown in pure culture.
- (3) Cells from a pure culture of the suspected organism should cause disease in a healthy animal.
- (4) The organism should be reisolated and shown to be the same as the original.

Microbiology's Renaissance: (1850's to 1920's) - The Age of Diagnoses

- 1889-91: Sergei Winogradsky and Martinus Beijerinck cofounders of microbial ecology, each made significant discoveries concerning microbial transformations of inorganic compounds aka chemolithorophy. First to develop ideas in biogeochemical cycling on a global scale.
- Winogradsky isolated and described nitrifying bacteria NH_4 + to NO_2 and NO_3 (cations to anions) and other redox reactions including S and Fe and anaerobic N-fixing bacteria.
- Famous for Winogradsky column used to study anaerobic photosynthesis.
- Beijerinck established enrichment culture techniques for the isolation of pure cultures. Isolated anaerobic sulfate reducing bacteria and symbiotic and non-symbiotic aerobic N-fixing bacteria.
- Famous for the statement: "Everything is everywhere, the environment selects."


Sergei Winogradsky

Martinus Beijerinck


9000	98		9
	0	8	00
NIES-642 Chlorella	ndgards nar n	ndgaris	10 pm

Modern History: (1920's to Present) - The Age of Biotechnology

- 1929: Alexander Fleming discovers penicillin. An antibiotic produced by a fungus that inhibits bacterial growth.
- 1928: Fred Griffith transforms Streptococcus pneumoniae.
- 1933: Invention of the electron microscope.
- 1937: First division of living organisms into prokaryotes and eukaryotes.
- 1940s: Beadle and Tatum One gene-one enzyme hypothesis.
- 1941: Oswald Avery DNA is the genetic material.
- 1953: Watson and Crick DNA structure as double helix.
- 1960s: Jacob and Monod Operon theory, control over enzyme expression.
- 1969: First Man on the Moon Apollo 11, Neil Armstrong and Buzz Aldrin.
- 1977: Fred Sanger DNA sequencing techniques. Discoveries of both Archaea and hydrothermal vents with the submersible Alvin happen this year too.

In 1928, Alexander Fleming, a microbiologist working at St. Mary's Hospital in London discovered penicillin. Initially due to purification difficulties and the substance's instability he dismissed the substance as a laboratory curiosity. In 1939, Drs. Howard Florey and Ernst Chain working at Oxford, used freeze drying to stabilize pure penicillin. Using the freeze dried formulation they were able to carry out successful trials, demonstrating the antibiotic's effectiveness. Fleming, Florey and Chain shared the 1945 Nobel prize in medicine for this work.

Modern History: (1920's to Present) - The Age of Biotechnology

1980's:
Genetic manipulation and cloning (PCR).
AIDS and causative agent HIV.
Ribozymes or catalytic RNAs.
RNAs used historical documents – Molecular phylogeny reshapes biological systematics to 3 domains of life.

• 1990's: GEMs or genetically engineered microorganisms. Prions or specific protein pathogens. Dolly the sheep. Full genome sequences.

• 2000's: Ed DeLong's contributions to marine microbiology. Craig Venter's environmental genome shotgun sequencing. What's next???

Archaeoglobus fulgidus Genome

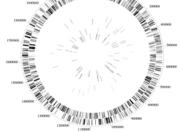
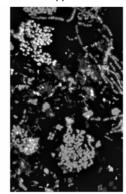



Figure Legend:

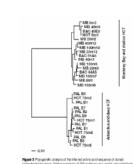
A circular representation of the A. fulgidus genome illustrating the location of each predicted coding region as well as selected features of the genome. Outer concentric circle: predicted coding regions on the + strand classified as to role. Second concentric circle: predicted coding regions on the - strand. Third and fourth concentric circles: IS elements (red) and repeats (blue) on the + and - strand, respectively. Fifth and sixth concentric circles: tRNAs (blue), rRNAs (red) and small stable RNAs (green) on the + and - strand, respectively.

Improvements in microscopy

Proteorhodopsin phototrophy in the ocean

Oded Béjà*†, Elena N. Spudich†‡, John L. Spudich‡, Marion Leclerc* & Edward F. DeLong*

* Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, INA


USA

** Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston, Texas 77030, USA

† These authors contributed equally to this work

Proteorhodopsin', a retinal-containing integral membrane protein that functions as a light-driven proton pump, was discovered in the genome of an uncultivated marine bacterium; however, the prevalence, expression and genetic variability of this protein in native marine microbial populations remain unknown. Here we report that photoactive proteorhodopsin is present in occanic surface waters. We also provide evidence of an extensive family of globally distributed proteorhodopsin variants. The protein pigments comprising this rhodopsin family seem to be spectrally tuned to different habitats—aboveing light at different wavelengths in accordance with light available in the environment. Togethre, our data suggest that proteorhodopsin-based phototrophy is a globally significant oceanic microbial process.

From Nature, 2001

Take Home Messages:

May the real "bacteriorhodopsin" Please stand up!

Major new way to make ATP in the ocean.

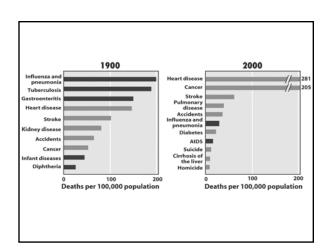

Two distinct "flavors" or evolutionary trajectories.

Figure 3 Phylogenetic engines of the Inferred attributed sequenced owner of correct protection-beginning reset. Extended analysis of 20 position engines to classificative three by religit bour (4) rings outing the PlazoBearch program of the Wisconsin Psychogen version to a German Groupe and the Wisconsin Psychogen version to a German of Contract of the Wisconsin Psychologen version to a German of Contract of Contract and the Section Association of the Contract of Contra

Comparative death rates over the last century in terms of top 10 lists

Key: Green are non-microbial diseases, Red are microbial diseases.

"The microbes will have the last word."

- Louis Pasteur