## ABI PRISM<sup>®</sup> BigDye<sup>®</sup> Primer Cycle Sequencing Ready Reaction Kit With AmpliTag<sup>®</sup> DNA Polymerase, FS

Protocol



#### © Copyright 2003, Applied Biosystems. Printed in the U.S.A.

#### For Research Use Only. Not for use in diagnostic procedures.

#### Notice to Purchaser: Limited License

A license under the process claims of U.S. Patent 5,821,058, or its foreign counterpart claims, has an up-front fee component and a running-royalty component. The purchase price of ABI PRISM® BigDye® Primer Cycle Sequencing Ready Reaction Kit includes limited, non-transferable rights under the running-royalty component to use only this amount of the product to practice the DNA sequence and fragment analysis processes described in said patent when this product is used in conjunction with an Authorized DNA sequence analysis instrument whose use is covered under the up-front fee component of this patent. No other rights are granted expressly, by implication, or by estoppel, or under any other patent ri ghts owned or licensable by Applied Biosystems. Further information relating to the purchase of licenses for DNA sequence and fragment analysis and other applications may be obtained by contacting the Director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404, U.S.A.

#### Notice to Purchaser: Limited License

The purchase of ABI PRISM® BigDye® Primer Cycle Sequencing Ready Reaction Kit includes a limited, nontransferable, nonexclusive license (without the right to resell, repackage, or sublicense) under the process claims of one or more of U.S. Patents 5,800,996, 5,863,727, and 5,945,526 and corresponding foreign patent claims and patent applications, to use this product solely with an Applied Biosystems commercial automated DNA sequencing machine or other authorized automated DNA sequencing machines that have been authorized under these patents by Applied Biosystems. No license is hereby granted for the use of this kit or the reagents therein, in any other automated sequencing machine. Such license is granted solely for research and other uses that are not unlawful. No other license is granted expressly, impliedly, or by estoppel. For information concerning the availability of additional licenses to practice the patented methodologies, contact: Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, U.S.A. Patents are pending in countries outside the United States.

#### Notice to Purchaser About Limited License

This kit (reagent) is sold pursuant to a limited sublicense from Amersham International plc under one or more U.S. Patent Nos. 5,498,523; 4,994,372, U.S. Patent Application Serial Nos. 08/324437; 08/337615 and corresponding foreign patents and patent applications. The purchase of this kit (reagent) includes a limited non-exclusive sublicense (without the right to resell, repackage or further sublicense) under such patent rights to use this reagent for DNA sequencing or fragment length analysis solely with an Applied Biosystems commercial automated sequencing machine or other authorized DNA sequencing machines that have been authorized for such use by Applied Biosystems, or for manual DNA sequencing. No license is hereby granted for use of this kit, or the reagents therein, in any other automated sequencing machine. Such sublicense is granted solely for research or other uses that are not unlawful. No other license is granted expressly, impliedly, or by estoppel. For information concerning the availability of additional license to practice the patented methodologies, contact: Amersham Life Science, Inc., Vice President, Regulatory Affairs, P.O. Box 22400, Cleveland, Ohio 44122. Patents are pending in countries outside the United States.

#### Notice to Purchaser: Limited License

The purchase price of this product includes a limited, nontransferable license under U.S. Patent 5,075,216 or its foreign counterparts, owned by Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd. (Roche) to use only this amount of the product for DNA Sequencing and related processes described in said patent solely for the research and development activities of the purchaser. No license under these patents to use the PCR process is conveyed expressly or by implication to the purchaser by the purchase of this product. A license to use the PCR process for certain research and development activities accompanies the purchase of certain reagents from licensed suppliers such as Applied Biosystems when used in conjunction with an Authorized Thermal Cycler, or is available from Applied Biosystems. Further information on purchasing licenses to practice the PCR process may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404 or Roche Molecular Systems, Inc. 1145 Atlantic Avenue, Alameda, California 94501.

#### TRADEMARKS:

ABI PRISM and its design, BigDye, GeneScan, and MicroAmp are registered trademarks of Applera Corporation or its subsidiaries in the U.S. and certain other countries.

AB (Design), Applera, Catalyst, POP, and POP-6 are trademarks of Applera Corporation or its subsidiaries in the U.S. and certain other countries.

AmpliTaq and GeneAmp are registered trademarks of Roche Molecular Systems, Inc.

Centricon is a trademark of W. R. Grace and Co.

pGEM is a registered trademark of Promega Corporation.

All other trademarks are the sole property of their respective owners.

Applera Corporation is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Printed in the USA, 01/2003

Part Number 403057 Rev. F

## **Contents**

| Introduction                                          | .3 |
|-------------------------------------------------------|----|
| Cycle Sequencing with AmpliTaq DNA Polymerase, FS     | .3 |
| BigDye Primers                                        | .3 |
| Dye Spectra                                           | .5 |
| BigDye Primer Ready Reaction Kit                      | .5 |
| Instrument Platforms                                  | .6 |
| Filter Set E                                          | .6 |
| Materials                                             | .7 |
| Kit Reagents                                          | .7 |
| Storage and Use of the Kit                            | .7 |
| Reagents and Equipment Supplied by the User           | .8 |
| Template Preparation                                  | 10 |
| Using Control DNA                                     | 10 |
| Single- and Double-Stranded Templates                 | 10 |
| BAC DNA Templates                                     | 10 |
| PCR Templates                                         | 11 |
| Purifying PCR Fragments                               | 12 |
| Direct PCR Sequencing                                 | 12 |
| DNA Quantity                                          | 13 |
| Cycle Sequencing                                      | 14 |
| Overview                                              | 14 |
| Preparing the Reactions                               | 14 |
| Cycle Sequencing on the GeneAmp 9600, 2400, or 9700   | 17 |
| Cycle Sequencing BAC DNA on the GeneAmp 9600 and 9700 | 18 |
| Cycle Sequencing on the TC1 or DNA Thermal Cycler 480 | 19 |
| Cycle Sequencing on the Catalyst 800                  | 20 |
| Cycle Sequencing on the ABI PRISM 877 ITC             | 21 |

| Optimizing Cycle Parameters          |
|--------------------------------------|
| Preparing the Sample for Loading     |
| Loading Options                      |
| Ethanol Precipitation                |
| Procedural Options                   |
| Sample Electrophoresis               |
| Overview                             |
| Run Modules                          |
| Dye Set/Primer Files                 |
| Electrophoresis on the ABI PRISM 310 |
| Electrophoresis on the ABI PRISM 377 |
| Setting the Data Analysis Range      |
| Appendix A. Control Sequences        |
| Appendix B. Technical Support        |

#### Introduction

| Cycle Sequencing<br>with<br>AmpliTaq DNA<br>Polymerase, FS | This kit formulation contains the sequencing enzyme AmpliTaq <sup>®</sup> DNA<br>Polymerase, FS. This enzyme is a variant of <i>Thermus aquaticus</i> DNA<br>polymerase that contains a point mutation in the active site. This results<br>in less discrimination against dideoxynucleotides, which leads to a<br>much more even peak intensity pattern. |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | This enzyme also has a second mutation in the amino terminal domain that virtually eliminates the 5' $\rightarrow$ 3' nuclease activity of AmpliTaq DNA Polymerase. The enzyme has been formulated with a thermally stable inorganic pyrophosphatase to eliminate problems associated with pyrophosphorolysis.                                           |
|                                                            | Cycle sequencing protocols that rely on the use of AmpliTaq DNA<br>Polymerase, FS offer the following advantages over traditional<br>sequencing methods:                                                                                                                                                                                                 |
|                                                            | <ul> <li>less hands-on operation</li> </ul>                                                                                                                                                                                                                                                                                                              |
|                                                            | <ul> <li>no alkaline denaturation step required for double-stranded DNA</li> </ul>                                                                                                                                                                                                                                                                       |
|                                                            | <ul> <li>same protocol for both single- and double-stranded templates</li> </ul>                                                                                                                                                                                                                                                                         |
|                                                            | <ul> <li>less starting template needed</li> </ul>                                                                                                                                                                                                                                                                                                        |
|                                                            | <ul> <li>more reproducible results</li> </ul>                                                                                                                                                                                                                                                                                                            |
| <b>BigDye Primers</b>                                      | Applied Biosystems has developed a set of dye primers labeled with                                                                                                                                                                                                                                                                                       |

**Dye Primers** Applied Biosystems has developed a set of dye primers labeled with novel, high-sensitivity dyes. The new dye structures contain a fluorescein donor dye, *e.g.*, 6-carboxyfluorescein (6-FAM), linked to a dichlororhodamine (dRhodamine) acceptor dye. The excitation maximum of each dye label is that of the fluorescein donor, and the emission spectrum is that of the dRhodamine acceptor (Figure 1 on page 5).

The donor dye is optimized to absorb the excitation energy of the argon ion laser in the Applied Biosystems DNA sequencing instruments. The linker affords extremely efficient energy transfer (quantum efficiency nearly 1.0, *i.e.*, 100%) between the donor and acceptor dyes. Hence, the BigDye<sup>®</sup> primers are 2–3 times brighter than standard dye primers when incorporated into cycle sequencing products.

| Primer | Acceptor Dye | Color of Raw Data<br>on ABI PRISM 310<br>Electropherogram | Color of Raw Data<br>on ABI PRISM 377<br>Gel Image |
|--------|--------------|-----------------------------------------------------------|----------------------------------------------------|
| А      | dR6G         | green                                                     | green                                              |
| С      | dR110        | blue                                                      | blue                                               |
| G      | dTAMRA       | black                                                     | yellow                                             |
| Т      | dROX         | red                                                       | red                                                |

The BigDye primers are labeled with the following dRhodamine acceptor dyes:

The new BigDye primers also have narrower emission spectra than the standard dye primers, giving less spectral overlap and therefore less noise. The brighter signal and decreased noise provide an overall four-to fivefold improvement in sensitivity, giving added flexibility in sequencing applications:

- For your convenience, the A, C, G, and T reactions are carried out in a 1:1:1:1 ratio.
- The nucleotide/dideoxynucleotide mixes have been optimized to give longer, more accurate reads.
- Large templates can be sequenced more readily. One such application is BAC end sequencing.
- Reactions using half the amount of Ready Reaction Premix can be run on some templates, such as PCR products and plasmids (see "Preparing the Reactions" on page 14).
- In some cases, reactions can be loaded onto the sequencing instrument without ethanol precipitation (see "Loading Options" on page 23).

**Dye Spectra** The normalized emission spectra of the dRhodamine dyes in the BigDye primers are shown in Figure 1.

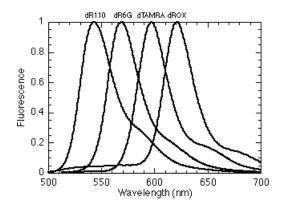



Figure 1 Emission spectra of dRhodamine dyes

#### BigDye Primer Ready Reaction Kit

The ABI PRISM<sup>®</sup> BigDye<sup>®</sup> Primer Cycle Sequencing Ready Reaction Kits combine AmpliTaq DNA Polymerase, FS, the new BigDye primers, and all the required components for the sequencing reaction.

The kits contain nucleotide mixes that have been specifically optimized for AmpliTaq DNA Polymerase, FS. The deoxy- and dideoxynucleotide ratios in the nucleotide mixes have been formulated to give a good signal balance above 700 bases. These formulations also contain 7-deaza-dGTP in place of dGTP to minimize band compressions.

In the Ready Reaction format, the dye-labeled primers, deoxynucleoside triphosphates, dideoxynucleoside triphosphates, AmpliTaq DNA Polymerase, FS, r*Tth* pyrophosphatase, magnesium chloride, and buffer are premixed into A, C, G, and T Ready Reaction cocktails to eliminate time-consuming reagent preparation. These reagents are suitable for performing fluorescence-based cycle sequencing reactions on single-stranded or double-stranded DNA templates, on polymerase chain reaction (PCR) fragments, and on large templates, *e.g.*, the ends of BAC clones.

## Instrument<br/>PlatformsThe protocols provided in this document were optimized using<br/>GeneAmp® PCR Instrument Systems thermal cyclers. Reactions can<br/>also be carried out on the CATALYST<sup>™</sup> 800 Molecular Biology<br/>LabStation or the ABI PRISM® 877 Integrated Thermal Cycler.

The ABI PRISM BigDye Primer Cycle Sequencing Ready Reaction Kit is for use with the ABI PRISM 310 Genetic Analyzer and ABI PRISM 377 DNA Sequencer (all models<sup>1</sup>). For more detailed instructions, refer to the appropriate instrument user's manual.

This kit can also be used with ABI<sup>™</sup> 373 DNA Sequencers on which the new ABI PRISM<sup>®</sup> BigDye<sup>®</sup> Filter Wheel has been installed.<sup>2</sup> Refer to the *ABI PRISM BigDye Filter Wheel User Bulletin* (P/N 4304367) for more information.

**IMPORTANT** This kit is not designed for use with ABI 373 DNA Sequencers and ABI 373 DNA Sequencers with XL Upgrade that do not have the ABI PRISM BigDye Filter Wheel.

**IMPORTANT** You must install new dye set/primer (mobility) files for the BigDye primers. Run modules and instrument (matrix) files are the same as for the dRhodamine terminators and BigDye terminators.

**IMPORTANT** The run modules and dye set/primer files will need to be installed and the instrument files made if you have not previously used the dRhodamine-based sequencing chemistries. See "Sample Electrophoresis" on page 26 and the *Automated DNA Sequencing Chemistry Guide* (P/N 4305080, www.appliedbiosystems.com/techsupport) for more information.

Filter Set EYou must use run modules and dye set/primer (mobility) files for virtual<br/>Filter Set E when sequencing with the ABI PRISM BigDye Primer Cycle<br/>Sequencing Ready Reaction Kit on the ABI PRISM 310 Genetic<br/>Analyzer or ABI PRISM 377 DNA Sequencer.

Use Filter Set A on ABI 373 DNA Sequencers with the ABI PRISM BigDye Filter Wheel.

<sup>1.</sup> Includes the ABI PRISM 377, ABI PRISM 377-18, ABI PRISM 377 with XL Upgrade, and the ABI PRISM 377 with 96-Lane Upgrade instruments.

<sup>2.</sup> Includes the ABI 373 and ABI 373 with XL Upgrade instruments.

### Materials

| Kit Reagents                  | ts This kit contains sufficient reagents to sequence either 100 or 1000 templates. All kits are stringently tested prior to shipment to ensure optimum performance. The reagents in the kit are listed below.                                                                             |  |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                               | <ul> <li>A Mix: dR6G BigDye primer, ddATP, dATP, dCTP, 7-deaza-dGTP,<br/>dTTP, Tris-HCI (pH 9.0 at 25 °C), MgCl<sub>2</sub>, and AmpliTaq DNA<br/>Polymerase, FS with thermostable pyrophosphatase</li> </ul>                                                                             |  |  |
|                               | <ul> <li>C Mix: dR110 BigDye primer, ddCTP, dATP, dCTP, 7-deaza-dGTP,<br/>dTTP, Tris-HCI (pH 9.0 at 25 °C), MgCl<sub>2</sub>, and AmpliTaq DNA<br/>Polymerase, FS with thermostable pyrophosphatase</li> </ul>                                                                            |  |  |
|                               | ♦ G Mix: dTAMRA primer, ddGTP, dATP, dCTP, 7-deaza-dGTP, dTTP,<br>Tris-HCI (pH 9.0 at 25 °C), MgCl <sub>2</sub> , and AmpliTaq DNA Polymerase,<br>FS with thermostable pyrophosphatase                                                                                                    |  |  |
|                               | <ul> <li>T Mix: dROX BigDye primer, ddTTP, dATP, dCTP, 7-deaza-dGTP,<br/>dTTP, Tris-HCI (pH 9.0 at 25 °C), MgCl<sub>2</sub>, and AmpliTaq DNA<br/>Polymerase, FS with thermostable pyrophosphatase</li> </ul>                                                                             |  |  |
|                               | ♦ pGEM <sup>®</sup> -3Zf(+) Control DNA template, 6 µg at 0.2 µg/µL                                                                                                                                                                                                                       |  |  |
| Storage and Use of<br>the Kit | The ABI PRISM BigDye Primer Cycle Sequencing Ready Reaction Kit should be stored at $-15$ to $-25$ °C.                                                                                                                                                                                    |  |  |
|                               | Before each use of the kit, allow the frozen stocks to thaw at room<br>temperature (do not heat). Mix each stock thoroughly and then<br>centrifuge briefly to collect all the liquid at the bottom of each tube.<br>Whenever possible, thawed materials should be kept on ice during use. |  |  |
|                               | <b>IMPORTANT</b> Do not leave reagents at room temperature for extended periods of time.                                                                                                                                                                                                  |  |  |

Reagents and Equipment Supplied by the User In addition to the reagents supplied in this kit, other items may be required depending on which instrument is used. Refer to the individual instrument protocols for the specific items needed. Many of the items listed are available from major laboratory suppliers (MLS) unless otherwise noted. Equivalent sources may be acceptable where noted.

**! WARNING !** CHEMICAL HAZARD. Before handling the chemical reagents needed for BigDye primer cycle sequencing, read the safety warnings on the reagent bottles and in the manufacturers' Material Safety Data Sheets (MSDS). Always wear protective equipment (lab coat, safety glasses, and chemical-resistant gloves) when handling chemicals. Dispose of waste in accordance with all local, state, and federal health and environmental regulations and laws.

| Reagent                                                                                                     | Source                                |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------|
| ABI PRISM dRhodamine Matrix Standards Kit                                                                   | Applied Biosystems<br>(P/N 403047)    |
| Performance Optimized Polymer 6 (POP-6 <sup>™</sup> )<br>with TSR for the ABI PRISM 310<br>Genetic Analyzer | Applied Biosystems<br>(P/N 402844)    |
| ABI PRISM 310 Genetic Analyzer Buffer with<br>EDTA (for use with POP-6™ polymer)                            | Applied Biosystems<br>(P/N 402824)    |
| Deionized formamide                                                                                         | Major laboratory suppliers<br>(MLS)   |
| Deionized water                                                                                             | MLS                                   |
| 5 mM EDTA (ethylenediaminetetraacetate) for<br>Express Load Option                                          | MLS                                   |
| 25 mM EDTA with 50 mg/mL blue dextran, pH 8.0                                                               | Applied Biosystems<br>(P/N 402055)    |
| Ethanol (EtOH), non-denatured,<br>95% and 70%                                                               | MLS                                   |
| Mineral oil, for the DNA Thermal Cycler (TC1)<br>and the DNA Thermal Cycler 480                             | Applied Biosystems<br>(P/N 0186-2302) |
| 1X Sequencing Buffer (80 mM Tris-HCl, 2 mM<br>MgCl <sub>2</sub> , pH 9.0)                                   | MLS                                   |
| Sodium acetate (NaOAc), 3 M, pH 4.6                                                                         | Applied Biosystems<br>(P/N 400320)    |
| TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)                                                               | MLS                                   |

#### Table 1. Reagents Supplied by the User

| Item                                                                                                                 | Source                                        |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| ABI PRISM 310 Genetic Analyzer,<br>ABI PRISM 377 DNA Sequencer, or<br>ABI PRISM 377 DNA Sequencer with<br>XL Upgrade | Applied Biosystems                            |
| ABI PRISM 310 Capillaries, 61 cm $\times$ 50 $\mu m$ i.d. (for long-read sequencing with POP-6)                      | Applied Biosystems<br>(P/N 402840)            |
| ABI PRISM 310 Capillaries, 47 cm $\times$ 50 $\mu$ m i.d. (for rapid sequencing with POP-6)                          | Applied Biosystems<br>(P/N 402839)            |
| ABI PRISM Plasmid Miniprep Kit                                                                                       | Applied Biosystems:                           |
| ♦ 100 purifications                                                                                                  | P/N 402790                                    |
| ♦ 500 purifications                                                                                                  | P/N 402791                                    |
| Adhesive-backed aluminum foil tape                                                                                   | 3M (Scotch Tape P/N 425-3)                    |
| Centricon-100 Micro-Concentrator columns                                                                             | Applied Biosystems<br>(P/N N930-2119)         |
| Microcentrifuge, variable speed, capable of reaching 14,000 $\times g$                                               | MLS                                           |
| Table top centrifuge, variable speed, capable of reaching $2000 \times g$ , with 96-tube tray adaptor                | MLS                                           |
| Thermal cycler                                                                                                       | Applied Biosystems                            |
| Vacuum centrifuge                                                                                                    | Savant Speedvac<br>(P/N DNA100) or equivalent |
| Vortexer                                                                                                             | MLS                                           |

 Table 2.
 Equipment Supplied by the User

## **Template Preparation**

| Using Control<br>DNA                        | Include a control DNA template as one of the templates in a set of sequencing reactions. The results from the control can help determine whether failed reactions are the result of poor template quality or sequencing reaction failure.                                   |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | We recommend M13mp18 as a single-stranded control and $pGEM^{\mbox{\sc B}}$ -<br>3Zf(+) as a double-stranded control. All Applied Biosystems DNA<br>sequencing kits provide pGEM control DNA. All dye terminator cycle<br>sequencing kits include a -21 M13 control primer. |
|                                             | Sequencing Standard                                                                                                                                                                                                                                                         |
|                                             | The BigDye Terminator Cycle Sequencing Standard (P/N 4304154) provides an additional control to help in troubleshooting electrophoresis runs. This standard contains lyophilized sequencing reactions that only require resuspension and denaturation before use.           |
| Single- and<br>Double-Stranded<br>Templates | Refer to the Automated DNA Sequencing Chemistry Guide<br>(P/N 4305080,www.appliedbiosystems.com/techsupport) for<br>information on preparing single- and double-stranded templates.                                                                                         |
| BAC DNA<br>Templates                        | With larger DNA targets such as bacterial artificial chromosomes (BACs), the quality of DNA template is important to the success of the sequencing reaction. Two methods have given good sequencing results:                                                                |
|                                             | <ul> <li>Alkaline lysis<sup>1</sup>, with extra phenol extraction and isopropanol<br/>precipitation if very clean DNA is desired</li> </ul>                                                                                                                                 |
|                                             | Cesium chloride (CsCl) banding                                                                                                                                                                                                                                              |
|                                             | <ul> <li>Commercial kits are also available for BAC DNA preparation:</li> <li>ProPrep BAC (LigoChem, http://www.ligochem.com)</li> <li>Individual reactions: P/N PLK-100, 100 reactions; PLK-1000, 1000 reactions</li> </ul>                                                |
|                                             |                                                                                                                                                                                                                                                                             |

<sup>1.</sup> Marra, M., Weinstock, L.A., and Mardis, E.R. 1996. End sequence determination from large insert cloning using energy transfer fluorescent primers. *Genomic Methods* 6: 1118–1122.

- 96-well plates: P/N PLF-1000, 1 plate; PLF-1000, 10 plates; PLF-2500, 25 plates)
- QIAGEN-tip 100 (QIAGEN: P/N 10043, 25 reactions; 10045, 100 reactions) and QIAGEN-tip 500 (QIAGEN: P/N 10063, 25 reactions; 10065, 100 reactions)

For other BAC DNA preparation protocols, refer to the following Web sites:

- Centre National de Séquençage (CNS, or Génoscope): http://www.cns.fr/externe/arabidopsis/protoBAC.html
- The Institute for Genome Research (TIGR): http://www.tigr.org/softlab/TPFBACmultiprep.052397.html
- University of Oklahoma Advanced Center for Genome Technology (ACGT): http://www.genome.ou.edu/DblAcetateProcV3.html
- Washington University School of Medicine Genome Sequencing Center:

http://genome.wustl.edu/gsc/manual/protocols/BAC.html

## PCR Templates Cycle sequenci

Cycle sequencing has been found to provide the most reproducible results when sequencing PCR templates. Although PCR fragments can be difficult to denature with traditional sequencing methods, cycle sequencing provides several chances to denature and extend the template, which ensures adequate signal in the sequencing reaction.

For optimum results, purify the PCR product before sequencing. In general, any method that removes dNTPs and primers should work. We recommend Centricon-100 columns (P/N N930-2119). The protocol for using these columns is provided in "Purifying PCR Fragments" on page 12.

Refer to the *Automated DNA Sequencing Chemistry Guide* (P/N 4305080, www.appliedbiosystems.com/techsupport) for more information on sequencing PCR templates.

#### **Purifying PCR** To purify PCR fragments by ultrafiltration:

#### Fragments

| Step | Action                                                                                                                                                                                                                                                                                                                      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Assemble the Centricon-100 column according to the manufacturer's recommendations.                                                                                                                                                                                                                                          |
| 2    | Load 2 mL deionized water onto the column.                                                                                                                                                                                                                                                                                  |
| 3    | Add the entire sample to the column.                                                                                                                                                                                                                                                                                        |
| 4    | Spin the column at $3000 \times g$ in a fixed-angle centrifuge for 10 minutes.<br><b>Note</b> The manufacturer recommends a maximum speed of $1000 \times g$ , but $3000 \times g$ has worked well in Applied Biosystems laboratories. If you are following the manufacturer's guidelines, increase the time to compensate. |
| 5    | Remove the waste receptacle and attach the collection vial.                                                                                                                                                                                                                                                                 |
| 6    | Invert the column and spin it at $270 \times g$ for 2 minutes to collect the sample. This should yield approximately 40–60 µL of sample.                                                                                                                                                                                    |
| 7    | Add deionized water to bring the purified PCR fragments to the original volume.                                                                                                                                                                                                                                             |

## Sequencing

**Direct PCR** PCR protocols that limit amounts of primers and dNTPs allow the product of the reaction to be used for sequencing with no purification. This is usually carried out by setting up the PCR amplification with 5–10 pmol of primers and 20–40 µM dNTPs, so that most of the primers and dNTPs are exhausted during amplification.

> If the yield of the desired PCR product is high and the product is specific, *i.e.*, it produces a single band when analyzed by agarose gel electrophoresis, the sample can be diluted before sequencing and will give good results. The dilution ratio depends on the concentration of your PCR product and needs to be determined empirically (start with 1:2 and 1:10 dilutions with deionized water).

When you limit concentrations of primers and dNTPs and dilute the PCR products, the PCR parameters have to be robust. Direct PCR sequencing is most useful in applications where the same target is being amplified and sequenced repeatedly and PCR conditions have been optimized.

**DNA Quantity** For most purified PCR products, using 1 µL for each reaction (A, C, G, and T) will work. If possible, quantitate the amount of purified DNA by measuring the absorbance at 260 nm or by some other method. If you do not quantitate the amount of DNA beforehand, you run the risk of using too much DNA, which can affect the final sequencing result.

The recommended amounts are shown in Table 3.

| Template        | Quantity   |
|-----------------|------------|
| PCR product:    |            |
| 100–200 bp      | 2–5 ng     |
| 200–500 bp      | 5–10 ng    |
| 500–1000 bp     | 10–20 ng   |
| 1000–2000 bp    | 20–50 ng   |
| >2000 bp        | 50–150 ng  |
| single-stranded | 150–400 ng |
| double-stranded | 200–800 ng |
| cosmid, BAC     | 0.5–1.0 µg |

 Table 3.
 Recommended DNA Quantities

The ranges given in the table above should work for all primers. You may be able to use even less DNA, especially when sequencing with the –21 M13 primer. The amount of PCR product to use in sequencing will also depend on the length and purity of the PCR product.

#### **Cycle Sequencing**

Overview These protocols have been optimized for all Applied Biosystems thermal cyclers, including the DNA Thermal Cycler (TC1), the DNA Thermal Cycler 480, the CATALYST 800 Molecular Biology LabStation, the ABI PRISM 877 Integrated Thermal Cycler, and the GeneAmp PCR Systems 9600, 2400, and 9700 in 9600 emulation mode. The protocols contained in this section should work for all seven instruments.

If you use a thermal cycler not manufactured by Applied Biosystems, you may need to optimize thermal cycling conditions. Ramping time is very important. If the thermal ramping time is too fast (>1 °C/sec), poor (noisy) data may result.

## Preparing the<br/>ReactionsThe flexibility of the BigDye primers allows three options for cycle<br/>sequencing:

| Reaction Type         | Template                                    | Cycle    |
|-----------------------|---------------------------------------------|----------|
| 1X                    | <ul> <li>PCR product</li> </ul>             | standard |
|                       | ♦ plasmid                                   |          |
|                       | ♦ M13                                       |          |
| 0.5X                  | <ul> <li>PCR product</li> </ul>             | standard |
|                       | ♦ plasmid                                   |          |
|                       | ♦ M13                                       |          |
| High-sensitivity (2X) | ♦ BACs                                      | modified |
|                       | <ul> <li>extra long PCR products</li> </ul> |          |
|                       | ♦ other large DNA                           |          |

**IMPORTANT** Prepare separate tubes for each of the four reactions (A, C, G, and T).

#### **1X Reactions**

| Step | Action                                                           |               |               |               |               |  |
|------|------------------------------------------------------------------|---------------|---------------|---------------|---------------|--|
| 1    | Aliquot the following reagents into four PCR tubes:              |               |               |               |               |  |
|      | Reagent                                                          | <b>Α</b> (μL) | <b>C</b> (μL) | <b>G</b> (μL) | <b>Τ</b> (μL) |  |
|      | Ready Reaction<br>Premix                                         | 4             | 4             | 4             | 4             |  |
|      | DNA Template (see<br>Table 3 on page 13<br>for quantity)         | 1             | 1             | 1             | 1             |  |
|      | Total Volume                                                     | 5             | 5             | 5             | 5             |  |
| 2    | If using the DNA Thermal Cycler (TC1) or DNA Thermal Cycler 480: |               |               |               |               |  |
|      | a. Add 20 µL of light mineral oil.                               |               |               |               |               |  |
|      | b. Spin to layer the oil over the aqueous reaction.              |               |               |               |               |  |

#### **0.5X Reactions**

Dilute 5X Sequencing Buffer (400 mM Tris-HCl, 10 mM MgCl<sub>2</sub>, pH 9.0—P/N 4305605, 600 reactions; 4305603, 5400 reactions) with four parts deionized water to 1X for use in this procedure.

| Step | Action                                                                                                                                                                     |               |               |               |               |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|--|
| 1    | Dilute each Ready Reaction Premix (A, C, G, T) 1:1 with 1X Sequencing Buffer in a separate tube ( <i>e.g.</i> , 2 $\mu$ L of A Mix and 2 $\mu$ L of 1X Sequencing Buffer). |               |               |               |               |  |
| 2    | Aliquot the following reagents into four PCR tubes for each DNA template:                                                                                                  |               |               |               |               |  |
|      | Reagent                                                                                                                                                                    | <b>Α</b> (μL) | <b>C</b> (μL) | <b>G</b> (μL) | <b>Τ</b> (μL) |  |
|      | Diluted Ready<br>Reaction Premix                                                                                                                                           | 4             | 4             | 4             | 4             |  |
|      | 1                                                                                                                                                                          | 1             |               |               |               |  |
|      | Total Volume 5 5 5 5                                                                                                                                                       |               |               |               |               |  |
| 3    | 3 If using the DNA Thermal Cycler (TC1) or DNA Thermal C<br>480:                                                                                                           |               |               |               |               |  |
|      | a. Add 20 µL of ligh                                                                                                                                                       | t mineral oi  | l.            |               |               |  |
|      | b. Spin to layer the oil over the aqueous reaction.                                                                                                                        |               |               |               |               |  |

#### High-sensitivity (2X) Reactions

Aliquot the following reagents into four PCR tubes:

| Reagent                                                  | Α (μL) | C (µL) | G (μL) | Τ (μL) |
|----------------------------------------------------------|--------|--------|--------|--------|
| Ready Reaction<br>Premix                                 | 8      | 8      | 8      | 8      |
| DNA Template (see<br>Table 3 on page 13<br>for quantity) | 2      | 2      | 2      | 2      |
| Total Volume                                             | 10     | 10     | 10     | 10     |

**Note** Use the GeneAmp PCR System 9600 or 9700 for cycle sequencing high-sensitivity reactions. The use of other thermal cyclers is not supported.

If the majority of your applications require high sensitivity, please contact your local Field Applications Specialist or Technical Support for more options. Cycle Sequencing on the GeneAmp 9600, 2400, or 9700 This protocol is recommended for use with the GeneAmp PCR Systems 9600 and 2400, and 9700 in 9600 emulation mode. The total time required for the cycling in this protocol is approximately 1 hour and 15 minutes.

| Step | Action                                                               |  |  |  |
|------|----------------------------------------------------------------------|--|--|--|
| 1    | Place the tubes in a thermal cycler and set the volume to 5 $\mu$ L. |  |  |  |
| 2    | Repeat the following for 15 cycles:                                  |  |  |  |
|      | <ul> <li>Rapid thermal ramp<sup>a</sup> to 96 °C</li> </ul>          |  |  |  |
|      | ♦ 96 °C for 10 sec.                                                  |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 55 °C</li> </ul>                      |  |  |  |
|      | ♦ 55 °C for 5 sec.                                                   |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 70 °C</li> </ul>                      |  |  |  |
|      | ♦ 70 °C for 1 min.                                                   |  |  |  |
| 3    | Repeat the following for 15 cycles:                                  |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 96 °C</li> </ul>                      |  |  |  |
|      | ♦ 96 °C for 10 sec.                                                  |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 70 °C</li> </ul>                      |  |  |  |
|      | ♦ 70 °C for 1 min.                                                   |  |  |  |
| 4    | Rapid thermal ramp to 4 °C and hold until ready to precipitate.      |  |  |  |

a. Rapid thermal ramp is 1 °C/sec.

#### Cycle Sequencing BAC DNA on the GeneAmp 9600 and 9700

This protocol is recommended for use with the GeneAmp PCR System 9600 and 9700 in 9600 emulation mode. The total time required for the cycling in this protocol is approximately 1 hour and 45 minutes.

| Step | Action                                                                                                                      |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | Place the tubes in a thermal cycler, set the volume at 10 $\mu$ L, and begin thermal cycling with the following parameters: |  |  |  |
|      | Rapid thermal ramp <sup>a</sup> to 95 °C                                                                                    |  |  |  |
|      | <ul> <li>♦ 95 °C for 5 min.</li> </ul>                                                                                      |  |  |  |
| 2    | Repeat the following for 20 cycles:                                                                                         |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 95 °C</li> </ul>                                                                             |  |  |  |
|      | <ul> <li>◆ 95 °C for 30 sec.</li> </ul>                                                                                     |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 50 °C</li> </ul>                                                                             |  |  |  |
|      | <ul> <li>◆ 50 °C for 15 sec.</li> </ul>                                                                                     |  |  |  |
|      | Rapid thermal ramp to 70 °C                                                                                                 |  |  |  |
|      | ♦ 70 °C for 1 min.                                                                                                          |  |  |  |
| 3    | Repeat the following for 15 cycles:                                                                                         |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 95 °C</li> </ul>                                                                             |  |  |  |
|      | <ul> <li>◆ 95 °C for 30 sec.</li> </ul>                                                                                     |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 70 °C</li> </ul>                                                                             |  |  |  |
|      | ♦ 70 °C for 1 min.                                                                                                          |  |  |  |
| 4    | Rapid thermal ramp to 4 °C and hold until ready to precipitate.                                                             |  |  |  |

a. Rapid thermal ramp is 1 °C/sec.

Cycle Sequencing on the TC1 or DNA Thermal Cycler 480

This protocol is recommended for use with the DNA Thermal Cycler (TC1) and the DNA Thermal Cycler 480. The total time required for the cycling in this protocol is approximately 1 hour and 45 minutes.

| Step | Action                                                          |  |  |  |
|------|-----------------------------------------------------------------|--|--|--|
| 1    | Place the tubes in a thermal cycler preheated to 95 °C.         |  |  |  |
| 2    | Repeat the following for 15 cycles:                             |  |  |  |
|      | ♦ Rapid thermal ramp <sup>a</sup> to 95 °C                      |  |  |  |
|      | <ul> <li>◆ 95 °C for 30 sec.</li> </ul>                         |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 55 °C</li> </ul>                 |  |  |  |
|      | ♦ 55 °C for 30 sec.                                             |  |  |  |
|      | ♦ Rapid thermal ramp to 70 °C                                   |  |  |  |
|      | ♦ 70 °C for 1 min.                                              |  |  |  |
| 3    | Repeat the following for 15 cycles:                             |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 95 °C</li> </ul>                 |  |  |  |
|      | ♦ 95 °C for 30 sec.                                             |  |  |  |
|      | <ul> <li>Rapid thermal ramp to 70 °C</li> </ul>                 |  |  |  |
|      | ♦ 70 °C for 1 min.                                              |  |  |  |
| 4    | Rapid thermal ramp to 4 °C and hold until ready to precipitate. |  |  |  |

a. Rapid thermal ramp is 1 °C/sec.

# Cycle Sequencing<br/>on the<br/>CATALYST 800Templates that have been prepared as described in this chapter should<br/>be suitable for use on the CATALYST 800 Molecular Biology LabStation<br/>using LabStation 3.0 protocols. Follow the protocols in the Turbo<br/>Appendix of the CATALYST 800 Molecular Biology LabStation User's<br/>Manual (P/N 903939) to set up your reactions.

Predefined temperature profiles are provided for the following:

- Double-Stranded Forward (Universal) Primer
- Double-Stranded Reverse (Universal) Primer
- Single-Stranded Forward Primer
- Quick Cycle

These are chosen during the pre-run dialogue, and can be edited to make custom profiles.

**IMPORTANT** Load only the reagents that you plan to use. Do not store kit reagents on the worksurface.

On extended runs (*e.g.*, overnight), we recommend withholding the addition of ethanol until you are present to complete the processing of the plate. This delay can be programmed during the prerun dialogue, in the Sample Pickup Time screen.

Directions for precipitating and centrifuging samples in MicroAmp<sup>®</sup> 9600 Trays are found in the Turbo Appendix of the *CATALYST 800 Molecular Biology LabStation User's Manual.* 

After thermal cycling, remove the collection tubes containing the extension products. Follow the "Ethanol Precipitation" procedure on page 23, beginning at step 3.

Cycle Sequencing<br/>on thePredefined temperature profiles are provided for the following on the<br/>ABI PRISM 877 Integrated Thermal Cycler:

- ABI PRISM 877 ITC
- Double-Stranded Forward (Universal) Primer
- Double-Stranded Reverse (Universal) Primer
  - Single-Stranded Forward Primer
- ♦ Quick Cycle

These are chosen on the Chemistry page of the Sequencing Notebook, and can be edited to make custom profiles. Refer to Chapter 4, "Using the ABI PRISM 877 Software," in the ABI PRISM 877 *Integrated Thermal Cycler User's Manual* for instructions on editing temperature profiles.

**IMPORTANT** Load only the reagents that you plan to use. Do not store kit reagents on the worksurface.

On extended runs (*e.g.*, overnight), we recommend withholding addition of ethanol until you are present to complete the processing of the plate. This delay can be programmed on the Chemistry page of the Sequencing Notebook.

Directions for precipitating and centrifuging samples in 96-well MicroAmp Trays are found in Chapter 3, "Preparing Chemistries," of the ABI PRISM 877 Integrated Thermal Cycler User's Manual.

#### Optimizing Cycle Parameters The standard cycling conditions used in this manual have been optimized for the –21 M13 forward primer and work well for most primers. If you obtain low signal with the M13 Reverse primer, you can improve your sequencing data by altering the cycling conditions as follows:

- Standard conditions use 55 °C as the annealing temperature in the three-step cycle. Lower the annealing temperature to 45–48 °C.
- The number of three-step versus two-step cycles can also affect signal strength. Increase the number of three-step cycles to 20 instead of the standard 15 (increasing the total number of cycles to 35).

#### **Preparing the Sample for Loading**

**Loading Options** There are two options for loading samples:

- Ethanol precipitation—samples are concentrated
- Express Load—samples are loaded directly onto a gel without being precipitated

See "Express Load Option for 36-Well Gels" on page 30.

**IMPORTANT** The Express Load option cannot be used on the ABI PRISM 310 Genetic Analyzer.

| Ethanol<br>Precipitation | 1    |                                                                                                                                                                                     |
|--------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Step | Action                                                                                                                                                                              |
|                          | 1    | Add 53 $\mu$ L of 95% ethanol (100 $\mu$ L if sequencing BAC DNA or other high-sensitivity reactions) to a clean microcentrifuge tube.                                              |
|                          |      | <b>Note</b> The use of sodium acetate is not necessary for precipitation.                                                                                                           |
|                          | 2    | Pipet the extension reactions from the bottom of each of the four tubes into the ethanol mixture. Mix thoroughly.                                                                   |
|                          |      | To remove reactions run on the<br>TC1 or DNA Thermal Cycler 480:                                                                                                                    |
|                          |      | Place the pipette tip into the bottom<br>of the reaction and carefully remove<br>the reaction from the oil (see<br>"Procedural Options" on page 25).                                |
|                          |      | Oil<br>Reaction                                                                                                                                                                     |
|                          |      | <b>IMPORTANT</b> Transfer as little oil as possible.                                                                                                                                |
|                          |      | Place the tube on wet ice or leave it at room temperature for 10–15 minutes to precipitate the extension products.                                                                  |
|                          | 4    | Spin the tube in a microcentrifuge for 10–20 minutes at maximum speed. Carefully aspirate or decant the supernatant and discard. At this point, a pellet may or may not be visible. |

Method 1 (continued)

| Step | Action                                                                                                                                                                                                                                                                                                                                                   |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5    | <ul> <li>Optional: Rinse the pellet with 250 µL of 70% ethanol and spin for 5 minutes in a microcentrifuge. Again, carefully aspirate or decant the supernatant and discard. This may remove some of the salts from the pellet, but doing so is often not necessary.</li> <li>Note If you use sodium acetate, you must rinse the pellet. This</li> </ul> |  |
|      | will reduce the carryover of salt.                                                                                                                                                                                                                                                                                                                       |  |
| 6    | Dry the pellet in a vacuum centrifuge for 1–3 minutes, or until dry. Do not overdry.                                                                                                                                                                                                                                                                     |  |

#### Method 2

| Step | Action                                                                                                                                                                                                                                                        |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | Add 53 $\mu L$ of 95% ethanol (100 $\mu L$ if sequencing BAC DNA or other high-sensitivity reactions) to the "A" reaction tube.                                                                                                                               |  |  |  |
|      | <b>Note</b> This method will not work if the TC1 or DNA Thermal Cycler 480 was used for thermal cycling.                                                                                                                                                      |  |  |  |
| 2    | Transfer the contents of the "A" reaction tube into the "C" reaction tube.                                                                                                                                                                                    |  |  |  |
| 3    | Pipet that mixture into the "G" reaction tube and so on until the contents of all four reaction tubes have been transferred into a single 1.5-mL microcentrifuge tube.                                                                                        |  |  |  |
| 4    | Spin the tube in a microcentrifuge for 10–20 minutes at maximum speed. Carefully aspirate the supernatant and discard. At this point, a pellet may or may not be visible.                                                                                     |  |  |  |
| 5    | <b>Optional:</b> Rinse the pellet with 250 $\mu$ L of 70% ethanol and spin for 5 minutes in a microcentrifuge. Again, carefully aspirate the supernatant and discard. This may remove some of the salts from the pellet, but doing so is often not necessary. |  |  |  |
|      | <b>Note</b> If you use sodium acetate, you must rinse the pellet. This will reduce the carryover of salt.                                                                                                                                                     |  |  |  |
| 6    | Dry the pellet in a vacuum centrifuge for 1–3 minutes, or until dry. Do not overdry.                                                                                                                                                                          |  |  |  |

#### **Procedural** Removing Reactions From Beneath Mineral Oil

 $\begin{array}{l} \textbf{Options} \\ \text{Removing the four reactions from under the oil can be difficult because} \\ \text{of their small (5 $\mu$L$) volumes. If this is a problem, try one of the following options:} \end{array}$ 

 After cycling, add 5 μL of deionized water to each reaction for a total volume of 10 μL.

If this is done, increase the amount of 95% ethanol used in step 1 of "Ethanol Precipitation" on page 23 to 110  $\mu L.$ 

 Double the amount of Ready Reaction Premix and DNA template for each reaction (A, C, G, and T) to yield several loadings' worth (*i.e.*, a 2X reaction).

#### Sample Electrophoresis

**Overview** Electrophoresis of samples sequenced with the BigDye terminators requires run modules and dye set/primer (mobility) files for Filter Set E. These files are included in the current versions of data collection software for the ABI PRISM 310 and ABI PRISM 377 instruments.

The files can also be obtained from the Applied Biosystems site on the World Wide Web:

www.appliedbiosystems.com/techsupport

Data analysis requires a Filter Set E instrument (matrix) file made from the ABI PRISM dRhodamine matrix standards (P/N 403047). Refer to the *Automated DNA Sequencing Chemistry Guide* (P/N 4305080, www.appliedbiosystems.com/techsupport) for information on creating instrument files.

If you do not have access to the World Wide Web, you can get the files from Applied Biosystems Technical Support, or from your local field applications specialist (call your local sales office for more information).

## **Run Modules** Use the appropriate run module for your run parameters on your instrument as shown below.

| Instrument                 | Configuration                                            | Run Module              |
|----------------------------|----------------------------------------------------------|-------------------------|
| ABI PRISM 310              | Performance Optimized Polymer 6 (POP-6),<br>1-mL syringe | Seq POP6 (1 mL) E       |
|                            | POP-6, 1-mL syringe,<br>Rapid Sequencing                 | Seq POP6 Rapid (1 mL) E |
| ABI PRISM 377 <sup>a</sup> | 36-cm wtr, 1200 scans/hr, any comb                       | Seq Run 36E-1200        |
|                            | 36-cm wtr, 2400 scans/hr, any comb                       | Seq Run 36E-2400        |
|                            | 48-cm wtr, 1200 scans/hr, any comb                       | Seq Run 48E-1200        |

a. Use any plate check and prerun module on the ABI PRISM 377 DNA Sequencer.

Dye Set/Primer Use the correct dye set/primer (mobility) file for your instrument as Files shown below.

| Instrument                                           | Dye Set/Primer File          |
|------------------------------------------------------|------------------------------|
| ABI PRISM 310, POP-6 polymer,<br>–21 M13 primers     | DP POP6 {BD Set-21M13}       |
| ABI PRISM 310, POP-6 polymer,<br>M13 Reverse primers | DP POP6 {BD Set-M13 Reverse} |
| ABI PRISM 377 <sup>a</sup>                           | DP5%LR{BD M13 FWD & REV}     |

a. The dye set/primer file can be used with 5 and 5.5% Long Ranger gels and 4 and 4.25% polyacrylamide gels (19:1, acrylamide:bis).

#### **Electrophoresis on the ABI PRISM 310** Electrophoresis on the ABI PRISM 310 Genetic Analyzer requires the appropriate run module (see page 27), dye set/primer (mobility) file (see page 27), and matrix file.

To run the samples on the ABI PRISM 310 Genetic Analyzer:

| Step | Action                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1    | Resuspend each sample pellet in 25 µL of Template Suppression reagent (TSR, supplied with the polymer).                                                                                                                                                                                                                                                                       |  |  |
| 2    | Vortex and spin the samples.                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3    | Heat the samples at 95 °C for 2 minutes to denature, then chill on ice.                                                                                                                                                                                                                                                                                                       |  |  |
| 4    | Vortex and spin the samples again. Place on ice until ready to use.<br><b>Note</b> Occasionally, you may want to prepare only a portion of a<br>sequencing reaction for analysis on the ABI PRISM 310 Genetic<br>Analyzer and reserve the rest for analysis later or elsewhere (refer<br>to the ABI PRISM 310 <i>Genetic Analyzer User's Manual</i> for more<br>information). |  |  |
| 5    | Refer to the ABI PRISM 310 <i>Genetic Analyzer User's Manual</i> for guidelines on loading the samples into the autosampler tray.                                                                                                                                                                                                                                             |  |  |

**Note** Although not recommended on a routine basis, you can keep samples prepared in TSR frozen for several weeks before running on the ABI PRISM 310 Genetic Analyzer with no detectable loss in resolution or base calling.

**Note** Occasionally, you may want to prepare only a portion of a sequencing reaction for analysis on the ABI PRISM 310 instrument and reserve the rest for analysis later or elsewhere. Refer to the ABI PRISM 310 *Genetic Analyzer User's Manual* for more information.

#### Electrophoresis on the ABI PRISM 377

Electrophoresis on the ABI PRISM 377 DNA Sequencer (all models<sup>1</sup>) requires the appropriate run module (see page 27), dye set/primer (mobility) file (see page 27), and instrument (matrix) file. You can use any plate check and prerun modules.

#### **Running ethanol-precipitated samples**

| Step | Action                                                                                                                                                                                                                |                     |                         |                                |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|--------------------------------|--|
| 1    | Prepare a loading buffer by combining the following in a 5:1 ratio:                                                                                                                                                   |                     |                         |                                |  |
|      | ♦ deionized formamide                                                                                                                                                                                                 |                     |                         |                                |  |
|      | ◆ 25 mM EDTA (pH 8.0) with blue dextran (50 mg/mL)                                                                                                                                                                    |                     |                         |                                |  |
|      | <b>! WARNING !</b> CHEMICAL HAZARD Formamide is a teratogen and is harmful by inhalation, skin contact, and ingestion. Use in a well-ventilated area. Use chemical-resistant gloves and safety glasses when handling. |                     |                         |                                |  |
| 2    | Resuspend each sample pellet in loading buffer as follows:                                                                                                                                                            |                     |                         |                                |  |
|      | Template                                                                                                                                                                                                              | Reaction            | Volume (µL),<br>36-well | Volume (µL),<br>48- or 64-well |  |
|      | PCR product,<br>plasmid, M13                                                                                                                                                                                          | 1X                  | 6                       | 4                              |  |
|      |                                                                                                                                                                                                                       | 0.5X                | 2–4                     | 1–2                            |  |
|      | BAC,<br>large DNA                                                                                                                                                                                                     | 2X                  | 2–4                     | 1–2                            |  |
| 3    | Vortex and spin                                                                                                                                                                                                       | the samples.        |                         | 1                              |  |
| 4    | Heat the samples at 95 °C for 2 minutes to denature. Place on ice until ready to load.                                                                                                                                |                     |                         |                                |  |
| 5    | Load each samp                                                                                                                                                                                                        | ole into a separate | e lane of the gel as    | s follows:                     |  |
|      | Template                                                                                                                                                                                                              | Reaction            | Volume (µL),<br>36-well | Volume (μL),<br>48- or 64-well |  |
|      | PCR product,<br>plasmid, M13                                                                                                                                                                                          | 1X                  | 1–1.5                   | 1                              |  |
|      |                                                                                                                                                                                                                       | 0.5X                | 2                       | 1                              |  |
|      | BAC,<br>large DNA                                                                                                                                                                                                     | 2X                  | 2                       | 1                              |  |

<sup>1.</sup> Includes the ABI PRISM 377, ABI PRISM 377-18, ABI PRISM 377 with XL Upgrade, and the ABI PRISM 377 with 96-Lane Upgrade instruments.

#### **Express Load Option for 36-Well Gels**

| Step | Action                                                                                                                                                                                                                |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | Combine the four reactions (A, C, G, T) with 5 $\mu$ L of 5 mM EDTA (25 $\mu$ L total volume).                                                                                                                        |  |  |  |
| 2    | Vortex briefly, then spin in a microcentrifuge.                                                                                                                                                                       |  |  |  |
| 3    | Prepare a loading buffer by combining the following in a 5:1 ratio:                                                                                                                                                   |  |  |  |
|      | <ul> <li>deionized formamide</li> </ul>                                                                                                                                                                               |  |  |  |
|      | ◆ 25 mM EDTA (pH 8.0) with blue dextran (50 mg/mL)                                                                                                                                                                    |  |  |  |
|      | <b>! WARNING !</b> CHEMICAL HAZARD Formamide is a teratogen and is harmful by inhalation, skin contact, and ingestion. Use in a well-ventilated area. Use chemical-resistant gloves and safety glasses when handling. |  |  |  |
| 4    | Combine 4 $\mu$ L of each 25- $\mu$ L reaction/EDTA mixture with 4 $\mu$ L of loading buffer.                                                                                                                         |  |  |  |
|      | Store the remaining reaction/EDTA mixture at –15 to –25 °C. This mixture can be concentrated by ethanol precipitation if the Express Load procedure does not yield enough signal.                                     |  |  |  |
| 5    | Heat the samples at 98 °C for 5 minutes with the lids open to denature and concentrate. Place on ice until ready to load.                                                                                             |  |  |  |
| 6    | Load 2.5 µL of each sample into a separate lane of the gel.                                                                                                                                                           |  |  |  |

# Setting the Data<br/>Analysis RangeThe unincorporated dye primer peak at the beginning of the<br/>electropherogram (and the full-length PCR peak at the end of the<br/>electropherogram if sequencing PCR products) must be excluded from<br/>analysis for data to be normalized correctly.

Analysis of ABI PRISM 310 data is especially sensitive to the location of the Peak 1 Location and Analysis Start Point. The software should pick the these correctly in most cases. A miscalled Peak 1 Location and/or Analysis Start Point can result in spacing anomalies visible in the analyzed data.

Refer to page 6-15 of the *Automated DNA Sequencing Chemistry Guide* (P/N 4305080, www.appliedbiosystems.com/techsupport) for more information on setting the data analysis range.

#### Partial Sequence of pGEM-3Zf(+) from the -21 M13 Forward Primer

The sequence of the -21 M13 forward primer, followed by the ensuing 1000 bases, is shown here.

TGTAAAACGACGGCCAGT (-21 M13 primer)

|            | <b>v i</b> | ,          |            |      |
|------------|------------|------------|------------|------|
| GAATTGTAAT | ACGACTCACT | ATAGGGCGAA | TTCGAGCTCG | 40   |
| GTACCCGGGG | ATCCTCTAGA | GTCGACCTGC | AGGCATGCAA | 80   |
| GCTTGAGTAT | TCTATAGTGT | CACCTAAATA | GCTTGGCGTA | 120  |
| ATCATGGTCA | TAGCTGTTTC | CTGTGTGAAA | TTGTTATCCG | 160  |
| CTCACAATTC | CACACAACAT | ACGAGCCGGA | AGCATAAAGT | 200  |
| GTAAAGCCTG | GGGTGCCTAA | TGAGTGAGCT | AACTCACATT | 240  |
| AATTGCGTTG | CGCTCACTGC | CCGCTTTCCA | GTCGGGAAAC | 280  |
| CTGTCGTGCC | AGCTGCATTA | ATGAATCGGC | CAACGCGCGG | 320  |
| GGAGAGGCGG | TTTGCGTATT | GGGCGCTCTT | CCGCTTCCTC | 360  |
| GCTCACTGAC | TCGCTGCGCT | CGGTCGTTCG | GCTGCGGCGA | 400  |
| GCGGTATCAG | CTCACTCAAA | GGCGGTAATA | CGGTTATCCA | 440  |
| CAGAATCAGG | GGATAACGCA | GGAAAGAACA | TGTGAGCAAA | 480  |
| AGGCCAGCAA | AAGGCCAGGA | ACCGTAAAAA | GGCCGCGTTG | 520  |
| CTGGCGTTTT | TCCATAGGCT | CCGCCCCCT  | GACGAGCATC | 560  |
| ACAAAAATCG | ACGCTCAAGT | CAGAGGTGGC | GAAACCCGAC | 600  |
| AGGACTATAA | AGATACCAGG | CGTTTCCCCC | TGGAAGCTCC | 640  |
| CTCGTGCGCT | CTCCTGTTCC | GACCCTGCCG | CTTACCGGAT | 680  |
| ACCTGTCCGC | CTTTCTCCCT | TCGGGAAGCG | TGGCGCTTTC | 720  |
| TCATAGCTCA | CGCTGTAGGT | ATCTCAGTTC | GGTGTAGGTC | 760  |
| GTTCGCTCCA | AGCTGGGCTG | TGTGCACGAA | CCCCCCGTTC | 800  |
| AGCCCGACCG | CTGCGCCTTA | TCCGGTAACT | ATCGTCTTGA | 840  |
| GTCCAACCCG | GTAAGACACG | ACTTATCGCC | ACTGGCAGCA | 880  |
| GCCACTGGTA | ACAGGATTAG | CAGAGCGAGG | TATGTAGGCG | 920  |
| GTGCTACAGA | GTTCTTGAAG | TGGTGGCCTA | ACTACGGCTA | 960  |
| CACTAGAAGG | ACAGTATTTG | GTATCTGCGC | TCTGCTGAAG | 1000 |
|            |            |            |            |      |

#### Partial Sequence of pGEM-3Zf(+) from the M13 Reverse Primer

The sequence of the M13 reverse primer, followed by the ensuing 1000 bases, is shown here.

#### CAGGAAACAGCTATGACC (M13 reverse primer)

| ATGATTACGC | CAAGCTATTT | AGGTGACACT | ATAGAATACT | 40   |
|------------|------------|------------|------------|------|
| CAAGCTTGCA | TGCCTGCAGG | TCGACTCTAG | AGGATCCCCG | 80   |
| GGTACCGAGC | TCGAATTCGC | CCTATAGTGA | GTCGTATTAC | 120  |
| AATTCACTGG | CCGTCGTTTT | ACAACGTCGT | GACTGGGAAA | 160  |
| ACCCTGGCGT | TACCCAACTT | AATCGCCTTG | CAGCACATCC | 200  |
| CCCTTTCGCC | AGCTGGCGTA | ATAGCGAAGA | GGCCCGCACC | 240  |
| GATCGCCCTT | CCCAACAGTT | GCGCAGCCTG | AATGGCGAAT | 280  |
| GGACGCGCCC | TGTAGCGGCG | CATTAAGCGC | GGCGGGTGTG | 320  |
| GTGGTTACGC | GCAGCGTGAC | CGCTACACTT | GCCAGCGCCC | 360  |
| TAGCGCCCGC | TCCTTTCGCT | TTCTTCCCTT | CCTTTCTCGC | 400  |
| CACGTTCGCC | GGCTTTCCCC | GTCAAGCTCT | AAATCGGGGG | 440  |
| CTCCCTTTAG | GGTTCCGATT | TAGTGCTTTA | CGGCACCTCG | 480  |
| ACCCCAAAAA | ACTTGATTAG | GGTGATGGTT | CACGTAGTGG | 520  |
| GCCATCGCCC | TGATAGACGG | TTTTTCGCCC | TTTGACGTTG | 560  |
| GAGTCCACGT | TCTTTAATAG | TGGACTCTTG | TTCCAAACTG | 600  |
| GAACAACACT | CAACCCTATC | TCGGTCTATT | CTTTTGATTT | 640  |
| ATAAGGGATT | TTGCCGATTT | CGGCCTATTG | GTTAAAAAAT | 680  |
| GAGCTGATTT | AACAAAAATT | TAACGCGAAT | TTTAACAAAA | 720  |
| TATTAACGCT | TACAATTTCC | TGATGCGGTA | TTTTCTCCTT | 760  |
| ACGCATCTGT | GCGGTATTTC | ACACCGCATA | TGGTGCACTC | 800  |
| TCAGTACAAT | CTGCTCTGAT | GCCGCATAGT | TAAGCCAGCC | 840  |
| CCGACACCCG | CCAACACCCG | CTGACGCGCC | CTGACGGGCT | 880  |
| TGTCTGCTCC | CGGCATCCGC | TTACAGACAA | GCTGTGACCG | 920  |
| TCTCCGGGAG | CTGCATGTGT | CAGAGGTTTT | CACCGTCATC | 960  |
| ACCGAAACGC | GCGAGACGAA | AGGGCCTCGT | GATACGCCTA | 1000 |
|            |            |            |            |      |

#### **Appendix B. Technical Support**

For the latest services and support information for all locations, go to http://www.appliedbiosystems.com, then click the link for Services and Support.

At the Services and Support page, you can:

- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support
- Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
- Download PDF documents
- Obtain information about customer training
- Download software updates and patches

In addition, the Services and Support page provides access to worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.

#### **ABI PRISM® DNA Sequencing Kits**

To order ABI PRISM DNA Sequencing Kits, please contact Applied Biosystems at one of the regional sales offices listed in Appendix B, Technical Support. All reagents are quality-controlled in stable formulations. All the kits listed below include protocols. Protocols can also be ordered separately.

#### dRhodamine Terminator Cycle Sequencing Kits with AmpliTaq® DNA Polymerase, FS

## BigDye<sup>®</sup> Terminator Cycle Sequencing Kits with AmpliTaq DNA Polymerase, FS

| P/N     | Kit                                | Reactions |
|---------|------------------------------------|-----------|
| 403044  | Ready Reaction                     | 100       |
| 403045  | Ready Reaction                     | 1000      |
| 4303143 | Ready Reaction                     | 5000      |
| 403041  | Protocol                           | -         |
| 403047  | dRhodamine Matrix<br>Standards Kit | -         |

| P/N     | Kit                                | Reactions |
|---------|------------------------------------|-----------|
| 4303573 | Ready Reaction                     | 24        |
| 4303149 | Ready Reaction                     | 100       |
| 4303150 | Ready Reaction                     | 1000      |
| 4303151 | Ready Reaction                     | 5000      |
| 4303237 | Protocol                           | _         |
| 403047  | dRhodamine Matrix<br>Standards Kit | -         |

#### **BigDye® Primer Cycle Sequencing Ready Reaction Kits with AmpliTaq DNA Polymerase, FS**

| P/N    | Primer                             | Reactions |
|--------|------------------------------------|-----------|
| 403051 | –21 M13                            | 100       |
| 403049 | –21 M13                            | 5000      |
| 403052 | M13 Reverse                        | 100       |
| 403050 | M13 Reverse                        | 5000      |
| 403057 | Protocol                           | _         |
| 403047 | dRhodamine Matrix<br>Standards Kit | -         |

#### Headquarters

850 Lincoln Centre Drive Foster City, CA 94404 USA Phone: +1 650.638.5800 Toll Free: +1 800.345.5224 Fax: +1 650.638.5884

#### Worldwide Sales Offices

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel, reaches 150 countries on six continents. For international office locations, please call our local office or refer to our Web site at www.appliedbiosystems.com.

#### www.appliedbiosystems.com



Applera Corporation is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Printed in the USA, 01/2003 Part Number 403057 Rev. F

an Applera business