Biology 324

Leaf/Moyer

Winter 2000 PLEASE NOTE THAT THERE WILL BE A MAKE UP PCR QUIZ ON

Sample PCR Quiz1

THURSDY FEB. 21.

Name

1) PCR reaction - 20 points

Set up a PCR master mix for determining the sensitivity of a PCR reaction. You want to compare the efficiency of PCR when amplifying varying numbers of templates including: 10^6 , 10^5 , 10^4 , and 10^3 copies.

Reaction conditions: final volume - 200 µl

Stock solutions:	final concentration or amount
10X PCR buffer	1X
25 mM MgCl ₂	0.5 mM
20 mg/ml BSA	100 µg/ml
Primer 1 (25 µM)	$1.0 \mu M$
Primer 2 (25 µM)	1.0 µM
2.5 mM dNTPs	250 μM
Taq Polymerase (20 U/µl)	5 U

The initial DNA concentration is 10 µg/ml.

Remember that 10 pg of 10 kb plasmid is 1.54×10^{-15} moles or 9.3×10^{5} molecules. (To simplify calculations, you can assume that 9.3×10^{5} is equal to 10^{6} molecules). Please note that the template is a plasmid which has a total length of 5 kb.

- 1) Show how you to set up one PCR reaction with 106 molecules of the plasmid template.
- 2) Then show how you will set up the PCR reactions for $\underline{4}$ different template numbers)ie. 106-103) and \underline{a} control. Be very clear in showing exactly what you will do. If it is garbled, you won't get full credit.

Biology 319 Sample PCR Quiz2

Name

1) PCR reaction - 20 points

Set up a PCR master mix for determining the sensitivity of a PCR reaction. You want to compare the efficiency of PCR when amplifying varying numbers of templates including: 10^6 , 10^5 , 10^4 , and 10^3 copies.

Reaction conditions: final volume - 50 µl

final concentration or amount
1X
2.5 mM
100 µg/ml
1.0 µM
1.0 µM
250 µM
5 U

The initial DNA concentration is 100 µg/ml.

Remember that 10 pg of 10 kb plasmid is 1.54×10^{-15} moles or 9.3×10^{5} molecules. (To simplify calculations, you can assume that 9.3×10^{5} is equal to 10^{6} molecules). Please note that the template is a plasmid which has a total length of 10 kb.

- 1) Show how you to set up <u>one</u> PCR reaction with 10⁶ molecules of the plasmid template.
- 2) Then show how you will set up the PCR reactions for 4 different template numbers)ie. 106-103) and a control. Be very clear in showing exactly what you will do. If it is garbled, you won't get full credit

Biology 319 Sample PCR Quiz 3

Name

1) PCR reaction - 20 points

Set up a PCR master mix for determining the sensitivity of a PCR reaction. You want to compare the efficiency of PCR when amplifying varying numbers of templates including: 10³, 10², and 10¹copies.

Reaction conditions: final volume - 150 µl

Stock solutions:	<u>final concentration or amount</u>
10X PCR buffer	1X
25 mM MgCl ₂	0.5 mM
10 mg/ml BSA	100 µg/ml
Primer 1 (20 µM)	1.0 µM
Primer 2 (20 µM)	1.0 µM
2.5 mM dNTPs	250 µM
Taq Polymerase (20 U/µl)	5 U

The initial DNA concentration is 0.10 µg/ml.

Remember that 10 pg of 10 kb plasmid is 1.54×10^{-15} moles or 9.3×10^{5} molecules. (To simplify calculations, you can assume that 9.3×10^{5} is equal to 10^{6} molecules). Please note that the template is a plasmid which has a total length of 50 kb.

- 1) Show how you to set up <u>one</u> PCR reaction with 10⁶ molecules of the plasmid template.
- 2) Then show how you will set up the PCR reactions for $\underline{3}$ different template numbers)ie. 10^3 - 10^1) and \underline{a} control. Be very clear in showing exactly what you will do. If it is garbled, you won't get full credit.