Study Guide: Highlights and Themes from Midterm #2 Lecture Series

Lecture Series 5 – Cell Cycle & Cell Division

Systems of Cell Division **Bacterial Cell Division** Interphase and the Control of Cell Division The Eukaryotic Cell Cycle Cell Cycle Control Internal and External Eukaryotic Chromosomes Organization of Chromosomes Levels of Packing Histones **Cohesins and Condensins** Mitosis = Cloning All the steps Cytokinesis in Animal vs Plant Cells **Evolutionary Development Issues** Meiosis = Diversity All the steps – twice! Alternation of Generations Genetic Variation Provided by Sex: Independent Assortment of Chromosomes Crossing Over Events of Non-Sister Chromatids Random Fertilization Meiotic Errors Nondisjunction Aneuploidy Programmed Cell Death Apoptosis

Lecture Series 6 – DNA and Its Role in Heredity

DNA: The Genetic Material
Griffiths' rough and smooth Streptococcus pneumoniae
Hershey-Chase Blender Experiment
The Structure of DNA
Models and X-ray crystallography
DNA Replication
Meselson and Stahl's experiment proved semiconservative model
The Mechanism of DNA Replication
Enzymes involved
Lagging strand problem and resolution
DNA Proofreading and Repair
DNA repair mechanisms
Thymine dimers, depurination and deamination
Lost telomeric DNA replaced by telomerase
Practical Applications of DNA Replication
DNA sequencing
Polymerase Chain Reaction

Lecture Series 7 – From DNA to Protein: Genotype to Phenotype (aka The Central Dogma)

The Hypothesis of one-gene, one-polypeptide Transcription: DNA-Directed RNA Synthesis Steps: Initiation, Elongation, Termination RNA Processing: Capping, Tailing, Splicing, UTRs snRNP's Spliceosomes Introns vs Exons The Genetic Code Degenerate but not ambiguous The three types of RNA: tRNA, mRNA, and rRNA Why are aminoacyl-tRNA synthetases so important not to mutate or otherwise mess with???
Translation: RNA-Directed Polypeptide Synthesis

Steps: Initiation, Elongation, Termination
Rem: Elongation includes codon recognition, peptide bond
formation & translocation

Regulation of Translation

Polysome aka polyribosome

Posttranslational Events

Signal sequences and multiple modifications

Lecture Series 8 – Eukaryotic Genome & Gene Expression

Compare and contrast Bacteria with Eucarya
Genome size vs complexity issue
Levels of chromatin packing
Mutations: Heritable Changes in Genes
Small scale or point mutations: silent, missense, nonsense, &
frameshift
Large scale at chromosome level: deletion, duplication, inversion,
& reciprocal translocation
Frequency of Repetitive Sequences (rem: teleomeres)
Transposition (Transposons or Jumping Genes)
Function of Transposase
The Structures of Protein-Coding Genes
Introns vs Exons revisited
Gene families and Pseudogenes
Differential Gene ExpressionEND MT#2 MATERIAL
Transcriptional Control
DNA binding protein motifs
Proximal vs distal control
Histones control access via acetylation level

Posttranscriptional and Posttranslational Control Alternative RNA splicing Proteasomes degrade "old & tired" proteins Operon Control: Regulation in Bacteria Inducible/Repressible Enymes lac vs trp operons + vs - control cAMP/CRP complex *Where is the Operator?* Comparison of Control Features in Bacteria and Eucarya