Lecture Series 10
Photosynthesis: Energy
from the Sun

Reading Assignments

* Review Chapter 3
Energy, Catalysis, & Biosynthesis

* Read Chapter 13
How Cells obtain Energy from Food

* Read Chapter 14

Energy Generation in Mitochondria &
Chloroplasts

Photosynthesis In General

+ Life on Earth depends on the absorption
of light energy from the sun.

+ In plants, photosynthesis takes place in
chloroplasts.




Photoautotrophs

A. Identifying Photosynthetic
Reactants and Products

+ Photosynthesizing plants take in CO,, water,
and light energy, producing O, and
carbohydrate. The overall reaction is

6 COZ +12 Hzo + hghT b d 66H1206 +6 Oz +6 HZO

+ The oxygen atoms in O, come from water, not
from CO,.

EXPERIMENT

Question: What is the source of the O produced
by photosynthesis?
Experiment 1 Experiment 2
H,0, C o8 H, I8, co,
METHOD l
RESULTS 0, 150,
Conclusion: Water is the source of the 0,
produced by photosynthesis.




Tracking atoms through photosynthesis

Reactants:

Products:

Focusing in on the location of photosynthesis in a plant
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B. The Two Pathways of
Photosynthesis: An Overview

+ In the light reactions of photosynthesis,
electron flow and photophosphorylation
produce ATP and reduce NADP* to

NADPH + H*.

- ATP and NADPH + H* are needed for the
reactions that fix and reduce CO, in the
Calvin-Benson cycle, forming sugars.
These are sometimes erroneously
referred to as the dark reactions.




An overview of photosynthesis: cooperation of the light reactions and the
Calvin cycle

Light

Chloroplast

CH,0
(sugar}

C. Properties of Light and
Pigments

+ Light energy comes in packets called
photons, but it also has wavelike properties.

+ Pigments absorb light in the visible
spectrum.

+ Absorption of a photon puts a pigment
molecule in an excited state with more
energy than its ground state.

The electromagnetic spectrum
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Exciting a Molecule

Ground state

C. Properties of Light and
Pigments

+ Each compound has a characteristic
absorption spectrum which reveals the
biological effectiveness of different
wavelengths of light.

An action spectrum plots the overall
biological effectiveness of different
wavelengths for an organism.

Absorption Spectra
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Action Spectrum

Relative rate of photosynthesis
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C. Properties of Light and
Pigments

+ Chlorophylls and accessory pigments form
antenna systems for absorption of light
energy.

An excited pigment molecule may lose its
energy by fluorescence, or by
transferring it to another pigment
molecule.




Location and structure of chlorophyll molecules in plants
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D. Electron Flow, Photophos-
phorylation, and Reductions

* Noncyclic electron flow uses two photosystems.

+ Photosystem II uses Pyqy chlorophyll, from
which light-excited electrons pass to a redox

chain that drives chemiosmotic ATP production.
Light-driven water oxidation releases O,
passing electrons to Pyg, chlorophyll.
Photosystem I passes electrons from P;q,
chlorophyll to another redox chain and then to
NADP*, forming NADPH + H*.




ELECTRON FLOW
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How noncyclic electron flow during the light reactions generates ATP and NADPH
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D. Electron Flow, Photophos-
phorylation, and Reductions

* Cyclic electron flow uses P;q, chlorophyll
producing only ATP. Its operation
maintains the proper balance of ATP and

NADPH + H* in the chloroplast.
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D. Electron Flow, Photophos-
phorylation, and Reductions

+ Chemiosmosis is the source of ATP in
photophosphorylation.

Electron transport pumps protons from

stroma into thylakoids, establishing a
proton-motive force.

Proton diffusion to stroma via ATP
synthase channels drives ATP formation
from ADP and P..

alectron at

high energy  H' ions (protons)

electron at _© -
0 g o

low energy o og
aoo 9g

o

STAGE 1: ELECTRON STAGE 2: PROTON
TRANSPORT DRIVES PUMP GRADIENT IS HARNESSED
THAT PUMPS PROTONS BY ATP SYNTHASE TO
ACROSS MEMBRANE MAKE ATP

(A) (B}

Chloroplast forms ATP Chemiosmotically

Thylakoid space, low pH

NADP B ATP g
00 o P ] . "'d".f""“' o = ® ‘;\';INI:-«-
®e0? \loes fI'/ 4

?\ ;}Jé?/ \‘I‘:..

Stroma, high pH

11



The light reactions and chemiosmosis: the organization of the thylakoid membrane

Comparison of chemiosmosis in mitochondria and chloroplasts
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D. Electron Flow, Photophos-
phorylation, and Reductions

* Photosynthesis probably originated in
anaerobic bacteria that used H,S as a
source of electrons instead of H,O.

+ Oxygen production by bacteria was
important in eukaryote evolution.
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E. Making Sugar from CO,:
The Calvin-Benson Cycle

+ The Calvin-Benson cycle makes sugar from
CO,. This pathway was elucidated through
use of radioactive tracers.

EXPERIMENT
Question: What is the pathway of CO; fixation
in photosynthesis?

METHOD Bright light source

Thin flask of —gh | %
green algae -

[# =——=={} First run
Tl

% b Second run
Paper |
chromatogram LR

30 sec ¥ 3sec
RESULTS

Conclusion: The | Conclusion: The
carbon from (07 ends @ initial product of
CO; fixation is IPG.

up in many mobecules.

E. Making Sugar from CO,:
The Calvin-Benson Cycle

* The Calvin-Benson cycle has three phases:
+ Fixation of CO,

+ Reduction (and carbohydrate production)

* Regeneration of RuBP.

* RuBP is the initial CO, acceptor, 3P6 is
the first stable product of CO, fixation.

Rubisco catalyzes the reaction of CO, and
RuBP to form 3PG.
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F. Photorespiration and Its

Consequences

+ Rubisco catalyzes a reaction between O, and
RuBP (forming phosphoglycolate + 3PG) in
addition to the usual route of CO,and RuBP.

+ Photorespiration byproducts are processed
by chloroplasts, peroxisomes, and
mitochondria.

Photorespiration significantly reduces
photosynthesis efficiency.
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F. Photorespiration and Its

Consequences

Higher temperatures and dryer climates
increase the effects of photorespiration;
the oxygenase function of rubisco is then
favored.

+ C4 plants bypass photorespiration. PEP
carboxylase in mesophyll chloroplasts
initially fixes CO, in four-carbon acids,
which diffuse into bundle sheath cells,
where their decarboxylation produces
locally high concentrations of CO,.

™ Close association
permits pumping
of C4 compounds

C,4 leaf anatomy and the C, pathway
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F. Photorespiration and Its

Consequences

+ Higher temperatures and dryer climates
increase the effects of photorespiration;
the oxygenase function of rubisco is then
favored.

CAM (crassulacean acid metabolism) plants
operate much like C, plants, but their initial
CO, fixation by PEP carboxylase is
temporally separated from the Calvin-
Benson cycle, rather than spatially
separated.
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