Lecture Series 10

Photosynthesis: Energy
from the Sun




Reading Assignments

* Review Chapter 3
Energy, Catalysis, & Biosynthesis

* Read Chapter 13
How Cells obtain Energy from Food

* Read Chapter 14

Energy Generation in Mitochondria &
Chloroplasts




Photosynthesis In General

» Life on Earth depends on the absorption
of light energy from the sun.

* In plants, photosynthesis takes place in
chloroplasts.
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A. Identifying Photosynthetic
Reactants and Products

* Photosynthesizing plants take in CO,, water,
and light energy, producing O, and
carbohydrate. The overall reaction is

6 COZ + 12 Hzo + llghT —> C6H1206 + 6 OZ + 6 Hzo

* The oxygen atoms in O, come from water, not
from CO,.




EXPERIMENT

Question: What is the source of the O, produced

by photosynthesis?
Experiment 1 Experiment 2
H,0, C [} H, ), CO,
METHOD

RESULTS

Conclusion: Water is the source of the O,

produced by photosynthesis.




Tracking atoms through photosynthesis

Reactants: 6 CO,

Products: CecH,,0,

t

12 H,0

6 H,0

60,



Focusing in on the location of photosynthesis in a plant

Leaf cross section

Vain

Stomata CO, O,

Mesophyll cell

Intermembrane space
Outer membrane



B. The Two Pathways of
Photosynthesis: An Overview

* In the light reactions of photosynthesis,
electron flow and photophosphorylation
produce ATP and reduce NADP* to

NADPH + H".

* ATP and NADPH + H* are needed for the
reactions that fix and reduce CO, in the
Calvin-Benson cycle, forming sugars.
These are sometimes erroneously
referred to as the dark reactions.




An overview of photosynthesis: cooperation of the light reactions and the
Calvin cycle
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C. Properties of Light and
Pigments

» Light energy comes in packets called
photons, but it also has wavelike properties.

* Pigments absorb light in the visible

spectrum.

+ Absorption of a photon puts a pigment
molecule in an excited state with more
energy than its ground state.




The electromagnetic spectrum
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Exciting a Molecule
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C. Properties of Light and
Pigments

» Each compound has a characteristic
absorption spectrum which reveals the
biological effectiveness of different

wavelengths of light.

* An action spectrum plots the overall
biological effectiveness of different
wavelengths for an organism.




Absorption Spectra

Chlorophyll b

Chlorophyll a
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Action Spectrum

Relative rate of photosynthesis
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Why leaves are green: interaction of light with chloroplasts

Light Reflected
light

Chloroplast

Transmitted
light



C. Properties of Light and
Pigments

» Chlorophylls and accessory pigments form
antenna systems for absorption of light
eneragy.

» An excited pigment molecule may lose its
energy by fluorescence, or by
transferring it to another pigment
molecule.




Location and structure of chlorophyll molecules in plants

Cluster of CH cHO inchlorophyll b
pigment molecules L, P lorophyll a

embedded
in membrane
Granum
(stack of > Por
) phyrin ring
thylakoids) (light-absorbing
| “head” of
., _) molecule)

Thylakoid
) 4 membrane

—w ’
Chloroplast
b,

> Hydrocarbon tail
(H atoms not shown)
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How a photosystem harvests light
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Excitation of isolated chlorophyll by light
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D. Electron Flow, Photophos-
phorylation, and Reductions

* Noncyclic electron flow uses two photosystems.

* Photosystem IT uses Pz, chlorophyll, from
which light-excited electrons pass to a redox
chain that drives chemiosmotic ATP production.
Light-driven water oxidation releases O,
passing electrons to P4y chlorophyll.

* Photosystem I passes electrons from P-,
chlorophyll to another redox chain and then to

NADP*, forming NADPH + H-




/\ Photosystem II ELECTRON FLOW
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How noncyclic electron flow during the light reactions generates ATP and NADPH

Primary
acceptor [

Primary &

acceptor e,
. FD e, o
E (1) Q) #%% 2 H*
o (2 Cytochrome ~=>[NADPH]
o | Splitting of water complex +
“ | releases oxygen H*
B +
& 2H
E +
& Ao, (4)

Light % Electron flow provides
energy for chemiosmotic




D. Electron Flow, Photophos-
phorylation, and Reductions

» Cyclic electron flow uses P4, chlorophyll
producing only ATP. Its operation
maintains the proper balance of ATP and

NADPH + H* in the chloroplast.




Photosystem I Redox chain

ADP + « P,
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Cyclic electron flow
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D. Electron Flow, Photophos-
phorylation, and Reductions

+ Chemiosmosis is the source of ATP in
photophosphorylation.

» Electron transport pumps protons from

stroma into thylakoids, establishing a
proton-motive force.

* Proton diffusion to stroma via ATP
synthase channels drives ATP formation
from ADP and P..
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Chloroplast forms ATP Chemiosmotically
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The light reactions and chemiosmosis: the organization of the thylakoid membrane
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Comparison of chemiosmosis in mitochondria and chloroplasts
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D. Electron Flow, Photophos-
phorylation, and Reductions

* Photosynthesis probably originated in
anaerobic bacteria that used H,S as a
source of electrons instead of H,O.

» Oxygen production by bacteria was
important in eukaryote evolution.




E. Making Sugar from CO,:
The Calvin-Benson Cycle

* The Calvin-Benson cycle makes sugar from
CO,. This pathway was elucidated through
use of radioactive tracers.




EXPERIMENT

Question: What is the pathway of CO, fixation
in photosynthesis?

METHOD Bright light source

Thin flask of
green algae

5|+ First run

. Second run
Paper

chromatogram —

1 Y r ) J
30 sec { 3 sec

l RESULTS i

Y i
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e @0

Conclusion: The Conclusion: The

carbon from CO; ends initial product of
up in many molecules. Jl CO; fixation is 3PG.




E. Making Sugar from CO,:
The Calvin-Benson Cycle

» The Calvin-Benson cycle has three phases:
» Fixation of CO,

* Reduction (and carbohydrate production)
* Regeneration of RuBP.

* RuBP is the initial CO, acceptor, 3PG is
the first stable product of CO, fixation.

Rubisco catalyzes the reaction of CO, and
RuBP to form 3PG.
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Ribulose bisphosphate
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A review of photosynthesis
LIGHT REACTIONS CALVIN CYCLE

Light

Photosystem |l 3-Phosphoglycerate

Electron transport chain
Photosystem |

Amino acids
Chloroplast NS Fatty acids

e Sucrose (export)




F. Photorespiration and Its
Consequences

* Rubisco catalyzes a reaction between O, and
RuBP (forming phosphoglycolate + 3PG) in
addition to the usual route of CO, and RuBP.

* Photorespiration byproducts are processed
by chloroplasts, peroxisomes, and
mitochondria.

» Photorespiration significantly reduces
photosynthesis efficiency.




F. Photorespiration and Its

Consequences

» Higher temperatures and dryer climates
increase the effects of photorespiration;
the oxygenase function of rubisco is then

favored.

» C, plants bypass photorespiration. PEP
carboxylase in mesophyll chloroplasts
initially fixes CO, in four-carbon acids,
which diffuse into bundle sheath cells,
where their decarboxylation produces
locally high concentrations of CO.,.




(a) Arrangement of cells in a C; leaf

A_—Upper epidermis
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permits pumping
of C4 compounds




C, leaf anatomy and the C, pathway
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F. Photorespiration and Its

Consequences

» Higher temperatures and dryer climates
increase the effects of photorespiration;
the oxygenase function of rubisco is then

favored.

* CAM (crassulacean acid metabolism) plants
operate much like C, plants, but their initial
CO, fixation by PEP carboxylase is
temporally separated from the Calvin-
Benson cycle, rather than spatially
separated.




C, and CAM photosynthesis compared

Sugarcane Pineapple
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