Lecture Series 8
The Eukaryotic Genome and
Its Expression

Reading Assignments

* Read Chapter 8
Control of Gene Expression
- Skim Chapter 9
How Genes and Genomes Evolve

A. The Eukaryotic Genome

+ Although eukaryotes have more DNA in
their genomes than prokaryotes, in some
cases there is NO apparent relationship
between genome size and organism
complexity.
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Amoeba dubia is the big winner at 670 Billion
base pairs per cell and an uncertain phylogeny!

[ 4 [ A Comparison of Prokaryotic and Eukaryotic Genes and Genomes
CHARACTERISTIC PROKARYOTES EUKARYOTES
Genome size (base pairs) 10%-107 10%-10"
Repeated sequences Few Many
Noncoding DNA within

coding sequences Rare Common
Transcription and translation

separated in cell No Yos
DNA segregated within

a nucleus No Yes
DNA bound to proteins Some Extensive
Promoter Yes Yes
Enhancer/silencer Rare Common
Capping and tailing

of mRNA No Yes
RNA splicing required Rare Common
Number of chromosomes

in genome One Many




A. The Eukaryotic Genome

+ Unlike prokaryotic DNA, eukaryotic DNA
is separated from the cytoplasm by being
contained within a nucleus.

+ The initial MRNA transcript of the DNA
gets modified before it is exported to
the cytoplasm.
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A. The Eukaryotic Genome

* The genome of the single-celled budding
yeast contains genes for the same
metabolic machinery as bacteria, as well
as genes for protein targeting in the cell.




1 4- 2 Comparison of the G of E. coli and Yeast )
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E.COLI YEAST &%ﬁ"'

Genome length (base pairs) 4,640,000 12,068,000 3
Number of proteins 4,300 6,200
Proteins with roles in:

Metabolism 650 650

Energy production/storage 240 175

Membrane transporters 280 250

DNA replication/repair/ 120 175

recombination

Transcription 230

Translation 180

Protein targeting /secretion 35

Cell structure 180

A. The Eukaryotic Genome

* The genome of the multicellular
roundworm Caenorhabditis elegans
contains genes required for intercellular
interactions.

The genome of the fruit fly has fewer
genes than that of the roundworm. Many
of its sequences are homologs of
sequences on roundworm and mammalian
genes.

1 4 g C.elegans Genes Essential
+~/  to Multicellularity

FUNCTION PROTEIN/DOMAIN

Transcription control Zinc finger; homeobox

RNA processing RNA binding domains

Nerve impulse Gated ion channels

transmission

Tissue formation Collagens

Cell interactions Extracellular domains;
glycotransferases

Cell—cell signaling G protein-linked
receptors; protein

ST " kinases; protein

phosphatases
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B. Mutations: Heritable
Changes in Genes

+ Mutations in DNA are often expressed as
abnormal proteins. However, the result
may not be easily observable phenotypic
changes.

Raw materials for evolution to operate.

Some mutations appear only under certain
conditions, such as exposure to a certain
environmental agent or condition.

B. Mutations: Heritable
Changes in Genes

+ Point mutations (silent, missense,
nonsense, or frame-shift) result from
alterations in single base pairs of DNA.
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B. Mutations: Heritable
Changes in Genes

+ Chromosomal mutations (deletions,
duplications, inversions, or translocations)
involve large regions of a chromosome.

Alterations of chromosome structure

(a) A deletion removes ABEDE FGH ABCGCE FGH
a chromosomal [ | IS 1) o ( Zeei] [ 2
segment. '
A BCDE FGH ABCBCDE FGH
(b) A duplication CHE 1T T 2etesten, ¢
repeats a segment. 4 .
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C. Repetitive Sequences

+ Highly repetitive DNA is present in up to
millions of copies of short sequences. It is
not transcribed. Its role is unknown.

+ Rem: Some moderately repetitive DNA
sequences, such as telomeric DNA is
found at the ends of chromosomes.




C. Repetitive Sequences

+ Some moderately repetitive DNA
sequences, such as those coding for
ribosomal RNA's, are transcribed.

+ Up to three rRNAs result, two go to the
large subunit and one goes to the small
subunit.
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C. Repetitive Sequences

+ Some moderately repetitive DNA
sequences are transposable, or able to
move about the genome. These are known
as Transposons.

Transposons can jump from place to place
on the chromosome by actually moving or
by making a new copy, inserted at a hew
location.

Transposon
—
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Insertion sequences, the simplest transposons

DNA
5 ATCCGGT... _ACCGGAT 3
3 TAGGCCA... 2 TGGCCTA 5
Inverted Transposase gene Inverted
repeat repeat
o
Insertion sequence
(simple transposon)
Insertion of a transposon and creation of direct repeats
Transposon al initial site
el iy
€ DNA polymerase l
and ligase
Transposon at now site
f. Inverted repeats j
DHrect ropoats
Anatomy of a composite transposon
Composite transposon
f ]
Antibiotic
Insertion i gene i
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Inverted repeats Transposase gene

Direct repeat Direct repeat
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Types of DNA sequences in the human genome

Exons (regions of genes coding
for protein, rRNA, (RNA) (1.5%)

Repetitive
DNA that

includes Introns and
transposable regulatory
elements sequences
and related (24%)
sequences

Unique
noncoding

\ - 1110 DNA (15%)
o / Repetive /
\ / ona 4

\ L= /
/ transposable y

+ elements. /
/ ! (about 15%) >
Alu elements i y o

(10%) L | : N~
"

Simple sequence  Large-segment
DNA (3%) duplications (5-6%)

D. The Structures of
Protein-Coding Genes

+ A typical protein-coding gene has
noncoding internal sequences (introns) as
well as flanking sequences that are
involved in the machinery of transcription
and translation in addition to its exons or
coding regions.

These are usually single copy genes.

(A} human chromosome 22—48 x 10° nucleotide pairs of DNA

heterochromatin
=10

10% of chremosome arm ~40 genes
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regulatary DNA **O" intron lgeno expression

sequences

protein

& folded protein
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Promoter of transcription Terminator of transcription
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(translation} -~ &N Stop codon
/ - b \

by
T S
(5]
Exon 2 Intron 2 Exon 3
Intron 1

Primary RNA. g (R S—

transcript

mENA [

thin the codi

d up in its mRNA?

Double- ~
stranded DNA Glabin mMRNA transcribed |
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RESULTS
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mRNA

/&
Template
strand

there were no intron:
mRENA

Displaced DNA strand

Conclusion: final mANA does not contain
noncoding internal n gene in DNA.

D. The Structures of
Protein-Coding Genes

- Some eukaryotic genes form families of
related genes that have similar sequences
and code for similar proteins. These
related proteins may be made at different
times and in different tissues.

Some sequences in gene families are
pseudogenes, which code for nonfunctional
mRNA's or proteins.
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Gene Families

B-Globin
gene cluster
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single-chain globin binds
| one oxygen molecule

oxygen

binding site

on heme
EVOLUTION OF A SECOND GLOBIN
CHAIN BY GENE DUPLICATION
FOLLOWED BY MUTATION

four-chain globin binds
four oxygen molecules
in a cooperative way

D. The Structures of
Protein-Coding Genes

Differential expression of different

important physiological changes during
human development.
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E. Transcriptional Control

Eukaryotic gene expression can be
controlled at the transcriptional,
posttranscriptional, franslational, and
posttranslational levels.
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E. Transcriptional Control

+ The major method of control of eukaryotic
gene expression is selective transcription,
which results from specific proteins binding
to regulatory regions on DNA.

E. Transcriptional Control

* A series of "general” transcription factors
must bind to the promoter before RNA
polymerase can bind.

* Whether RNA polymerase will initiate
transcription also depends on the binding
of regulatory proteins, activator proteins,
and repressor proteins.
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RNA pol IT requires many “general” transcription factors

TATA box start of transeription
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17



E. Transcriptional Control

+ The DNA-binding domains of most DNA-
binding proteins have one of four
structural motifs: helix-turn-helix, zinc
finger, leucine zipper, or homeodomain.

Three of the major types of DNA-binding domains in transcription factors
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E. Transcriptional Control

* Acetylation of histone tails promotes
loose chromatin structure that permits
transcription fo more readily occur.




histone acetylation

Unacetylated histones

Acetylated histones
(b) Acetylation of histone tails promotes loose chromatin
structure that permits transcription

A simple model of histone tails and the effect of
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F. Posttranscriptional Control

- Because eukaryotic genes have several
exons, alterative mRNAs can be generated
from the same RNA transcript.

+ This alternate splicing can be used to
produce different proteins.

+ The stability of mRNA in the cytoplasm
can be regulated by the binding of
proteins.

Alternative RNA splicing

rimar
RNA
ranscripr 1L

| [ -
RNA splicing or \

mRNA - [ L

F. Posttranslational Control

* Proteasomes degrade proteins targeted
for breakdown.
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Degradation of a protein by a proteasome
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G. Regulation of Gene
Expression in Prokaryotes

+ An operon consists of a promoter, an
operator, and structural genes. Promoters
and operators do not code for proteins,
but serve as binding sites for regulatory
proteins.

+ When a repressor protein binds to the
operator, transcription of the structural
genes is inhibited.
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Repressor Bound to an Operator Blocks Transcription
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G. Regulation of Gene
Expression in Prokaryotes

* The expression of prokaryotic genes is
regulated by: inducible operator-repressor
systems, repressible operator-repressor
systems (e.g., both negative control), and
systems that increase the efficiency of a
promoter (e.g., positive control).

* Repressor proteins are coded by
constitutive regulatory genes.

The frp operon: regulated synthesis of repressible enzymes

ona O [
l No RNA made
A
mANA 7) /

o
A
Protein a —_— Active
A repressor
. Tryptophan
(corepressor)

(b) Tryptophan present, repressor active, operon off
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The trp operon: regulated synthesis of repressible enzymes

irp operon
Promoter 2
———_  Genesofoperon
DNA \\}Elt\ =l ULl fE [ tmD | et [ fmB | tpA N
Regulatary l RNA”  Operator
gena 3 polymerase
mARNA
S |
T
Protein Inactive [ Pﬂ?!fp::rlldeﬂ that make up
repressor |

(a) Tryptophan absent, repressor inactive, operon on

The /ac operon: regulated synthesis of inducible enzymes
Promoter
L

;eﬁ'e‘ 4 ! Operlntur‘
onA \\ﬁlr% C
No

| '

¥ /{;’

mRNA ﬁ RNA /

5 polymerase

Active _
Protein repressor

(a) Lactose absent, repressor active, operon off

The /ac operon: regulated synthesis of inducible enzymes

lac operon

LT i s s 0 N A0 BE W AN

l RNA/
mANA f?a' mlﬁ;iH
5 l

Pratein H—ﬂ-”
Allolactose \ Inactive
{Inducer) o repressor

(b} Lactose present, repressor inactive, operon on
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G. Regulation of Gene
Expression in Prokaryotes

+ The efficiency of RNA polymerase can be
increased by regulation of the level of
cyclic AMP, which binds to CAP (cAMP
activator protein).

+ The CAP-cAMP complex then binds to a
site near the promoter of a target gene,
enhancing the binding of RNA polymerase
and hence transcription.

Positive control: cAMP activator protein

Promoter
A A
—

DNA 0\ lacZ

S Sy ==
mhmdmg site RNA Operator

polymerase
<> P ~ Active
CAMP (’ |
.\i‘/,x N Inactive fac
( “?\IT . repressor
y nactive

N’

(a) Lactose present, glucose scarce (cAMP level high):
abundant lac mRNA synthesized

Positive control: cAMP activator protein

Promoter
' A}
ona N I [ ] facz
binding site RNA Operator

polymerase

Inactive \/% Inactive lac
s Spreseor

(b) Lactose present, glucose present (cAMP level low): little
lac mRNA synthesized
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RNA

CAP- polymerase-

binding  pinding site start site for RNA synthesis

site (promatar)

operator lac? gene
B0 4T Bhucieotie pairs
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Epresso
+ GLUCOSE MR T OPERON OFF both
LACTOSE because lac repressor bound
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repressor
- sLucose -4 ;e OPERON OFF

g

LACTOSE " because lac repressor bound
CAP RMNA polymerase
GLUCOSE_".;- L R
+ LACTOSE | i I
e
RNA

?
JI_’__) The Relationships Between Positive and Negative Control in the lac Operon
BNA POLYMERASE

CAMP BINDING TO TRANSCRIPTION LACTOSE
(GLUCOSE  LEVELS  PROMOTER LACTOSE _OFLAC GENES! _ USED BY CELLSY
Present  Low Absent Absent No No
Present Low Absent Present No N
Absent High Present Present Yes Yes
Absent High Absent Absent Mo No

to operator

H. Comparison of Control
Features in Bacteria &
Eucarya

Bacteria have multiple genes under single
control: operons

Eucarya have multiple RNA polymerases

Simple vs. Complex Transcription Factors

Local vs. Distal Control: Enhancers/Silencers
Eucarya must contend with Chromatin
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