Lecture Series 3
The Organization of Cells
Reading Assignments

• Read Chapter 15
 Endomembrane System
• Read Chapter 17
 Cytoskeleton
A. The Cell: The Basic Unit of Life

- Cell Theory: All cells come from preexisting cells and have certain processes, molecules, and structures in common.
Fluorescent stain of cell
A. The Cell: The Basic Unit of Life

- To maintain adequate exchanges with its environment, a cell’s surface area must be large compared with its volume.
Geometric relationships explain why most cells are so small.

SA / V ratios measure this feature.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total surface area</td>
<td>6</td>
<td>150</td>
<td>750</td>
</tr>
<tr>
<td>(height × width × number of sides × number of boxes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total volume</td>
<td>1</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>(height × width × length × number of boxes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface-to-volume ratio (area + volume)</td>
<td>6</td>
<td>1.2</td>
<td>6</td>
</tr>
</tbody>
</table>
A. The Cell: The Basic Unit of Life

- Microscopes are needed to visualize cells. Electron microscopes allow observation of greater detail than light microscopes do.
The size range of cells:

- Eukaryotes
- Prokaryotes
A. The Cell: The Basic Unit of Life

• Prokaryotic cell organization is characteristic of the domains Bacteria and Archaea.

• Prokaryotic cells lack internal compartments, i.e., no bags within bags of biochemistry.
Escherichia coli
A. The Cell: The Basic Unit of Life

- Eukaryotic cells have many membrane-enclosed compartments, including a nucleus containing DNA.
Nuclei and Actin in Animal cells
B. Prokaryotic Cells

- All prokaryotic cells have a plasma membrane, a nucleoid region with DNA, and a cytoplasm.
- Cytoplasm contains ribosomes and cytosol (dissolved enzymes, water, small molecules and dissolved macromolecules).
- Some prokaryotes have a cell wall, outer membrane and capsule, some contain photosynthetic membranes, and some have mesosomes.
A prokaryotic cell

(a) A typical rod-shaped bacterium

(b) A thin section through the bacterium *Bacillus coagulans* (TEM)
Photosynthetic membranes in cyanobacteria
Drawing of the mesosome structure found in *Chromobacterium violaceum*

- A convoluted invagination of the cytoplasmic membrane found in some bacterial cells.
B. Prokaryotic Cells

• Some prokaryotes have rotating flagella for movement. Pili are projections by which prokaryotic cells attach to one another or to environmental surfaces.
C. Eukaryotic Cells

• Like prokaryotic cells, eukaryotic cells have a plasma membrane, cytoplasm, and ribosomes. However, eukaryotic cells are larger and contain many membrane-enclosed organelles.

• The compartmentalization of Eukaryotic cells is the key to their success and ability to carry out specialized functions. Requires endosymbiotic relationships to have occurred.
Overview of an animal cell:

- NUCLEUS
 - Chromatin
 - Nucleolus
 - Nuclear envelope

- ENDOPLASMIC RETICULUM (ER)
 - Rough ER
 - Smooth ER

- CYTOSKELETON
 - Microfilaments
 - Intermediate filaments
 - Microtubules

- Flagellum
- Centrosome
- Peroxisome
- Microvilli

- Ribosomes
- Plasma membrane
- Mitochondrion
- Golgi apparatus
- Lysosome

Not in animal cells:
- Chloroplasts
- Central vacuole and tonoplast
- Cell wall
- Plasmodesmata
Overview of a plant cell:

- NUCLEUS
 - Chromatin
 - Nucleolus
 - Nuclear envelope
 - Centrosome

- Rough endoplasmic reticulum
- Smooth endoplasmic reticulum
- Ribosomes
- Central vacuole
- Tonooplast
- Microfilaments
- Intermediate filaments
- Microtubules
- Golgi apparatus
- Mitochondrion
- Peroxisome
- Plasma membrane
- Cell wall
- Wall of adjacent cell
- Chloroplast
- Plasmodesmata

Not in plant cells:
- Lysosomes
- Centrioles
- Flagella (in some plant sperm)
C. Eukaryotic Cells

- Membranes that envelop organelles in eukaryotic cells are partial barriers ensuring that the chemical composition of the organelle’s interior differs from that of the surrounding cytoplasm.
The nucleus is usually the largest organelle in a cell. It is surrounded by the nuclear envelope.

Nuclear pores have complex structures governing what enters and leaves the nucleus.

Within the nucleus, the nucleolus is the source of the ribosomes found in the cytoplasm.
The nucleus and its envelope
D. Organelles that Process Information

- Nuclear Lamina is a protein mesh that interacts with chromatin and supports nuclear envelope.
- The nucleus contains most of the cell’s DNA, which associates with protein to form chromatin. Chromatin is diffuse throughout the nucleus. Just before cell division, it condenses to form chromosomes.
- Ribosomes are the sites of protein synthesis.
Chromatin: diffuse (in nucleoplasm) and dense (attached to nuclear lamina)

Chromosome: very dense packed bodies
Ribosomes: Free and Bound

(a) TEM showing ribosomes
(b) Diagram of a ribosome
E. Organelles that Process Energy

- Mitochondria are enclosed by an outer membrane and an inner membrane that folds inward to form cristae.
- Mitochondria contain proteins needed for cellular respiration and generation of ATP.
- They are the energy transformers in terms of performing cellular respiration.
The mitochondrion, site of cellular respiration
E. Organelles that Process Energy

- Plastids are another class of organelles used for photosynthesis or storage of materials.
 - Amyloplasts
 - Chromoplasts
 - Chloroplasts
E. Organelles that Process Energy

- Chloroplasts have a triple membrane system containing an internal system of thylakoids organized as stacks of grana.

- Thylakoids within chloroplasts contain the chlorophyll and proteins that harvest light energy for photosynthesis.
The chloroplast, site of photosynthesis
E. Organelles that Process Energy

- Mitochondria and chloroplasts contain their own DNA nucleoid and ribosomes and can make some of their own proteins.
- The endosymbiosis theory of the evolutionary origin of mitochondria and chloroplasts states that they originated when large cells engulfed, but did not digest, smaller ones. Mutual benefits permitted this symbiotic relationship to evolve into eukaryotic organelles of today.
Giardia: A key to evolutionary history?
F. The Endomembrane System

- The endomembrane system is made up of a series of interrelated membranes and compartments.
- Is continuous with the nuclear envelope.
- This complex factory has a direction of flow in terms of the production of various cellular components and their further processing from the nuclear membrane to the plasma membrane.
- May accounts for more than half the total membrane in many eukaryotic cells.
• The rough endoplasmic reticulum has ribosomes that synthesize proteins.
 ◆ RER produces proteins and membranes, which are distributed by transport vesicles.
• The smooth endoplasmic reticulum lacks ribosomes and is associated with synthesis of lipids. SER also:
 ◆ Metabolizes carbohydrates
 ◆ Stores calcium
 ◆ Detoxifies poison
Endoplasmic reticulum (ER)
Signal Recognition Proteins

mRNA ribosome
3' 5'
signal-recognition particle (SRP)
ER signal sequence on growing polypeptide chain
SRP receptor in ER membrane
translocation channel
SRP displaced and recycled
CYTOSOL
ER LUMEN
Glycosylation of Proteins in ER

KEY:
- green hexagon = glucose
- blue hexagon = mannose
- red hexagon = N-acetylglucosamine

Growing polypeptide chain
- lipid-linked oligosaccharide
- oligosaccharide protein transferase

NH₂

CYTOSOL

ER LUMEN

Asn
3 Mechanisms for Protein Transport in the Cell

Which is determined by a **signal sequence**

Gets unfolded via this route
F. The Endomembrane System

• The Golgi apparatus is the cellular post office; storing, modifying and packaging proteins.
• It receives materials from the rough ER via vesicles that fuse with the cis region of the Golgi.
• It adds signal molecules to proteins, directing them to various destinations.
• Vesicles originating from the trans region of the Golgi contain proteins for different cellular locations. Some fuse with the plasma membrane and release their contents outside the cell.
The Golgi apparatus
F. The Endomembrane System

- Lysosomes fuse with transport vesicles produced by endocytosis to form endosomes, in which digestion occurs.
- Undigested materials are secreted from the cell when the endosome fuses with the plasma membrane.
- Hydrolysis reactions occur inside.
- Cell’s recycling center.
- Programmed cell destruction or apoptosis.
Lysosomes

(a) Lysosomes in a white blood cell

(b) A lysosome in action
Lysosome Contents
(havoc for the cytoplasm)
The formation and functions of lysosomes (Step 1)

- Plasma membrane
- Rough ER
- Transport vesicle
- Golgi apparatus
- Food
- Phagocytosis
- Food vacuole
The formation and functions of lysosomes (Step 2)

- Plasma membrane
- Rough ER
- Transport vesicle
- Golgi apparatus
- Food vacuole
- Phagocytosis
- Lysosomes
- Food
The formation and functions of lysosomes (Step 3)
G. Other Organelles Enclosed by Membranes

- Peroxisomes and glyoxysomes contain special enzymes and carry out specialized chemical reactions inside the cell.
- Peroxisomes deal with excess hydrogen peroxide.
- Glyoxysomes break down stored lipids to sugars in mostly young plant cells.
Peroxisomes

Chloroplast

Peroxisome

Mitochondrion

1 μm
G. Other Organelles Enclosed by Membranes

- Vacuoles consist of a membrane-enclosed compartment of water and dissolved substances. They take in water and enlarge, providing pressure to stretch the cell wall and structural support for a plant.
- Tonoplast is part of endomembrane system.
- Various types:
 - Food Vacuole
 - Contractile Vacuole
 - Central Vacuole
The plant cell vacuole

Cellular Warehouse

Central vacuole

Cytosol

Tonoplast

Cell wall

Chloroplast

5 µm
The cytoskeleton within the cytoplasm of eukaryotic cells provides shape, strength, and movement. It consists of three interacting types of protein fibers:

- **Actin filaments** (tension-bearing)
- **Intermediate filaments** (tension-bearing)
- **Microtubules** (compression-resistant)
Cytoskeleton Components

- Plasma membrane
- Ribosomes
- Rough endoplasmic reticulum
- Microfilaments (Actin)
- Intermediate filament
- Microtubule
- Mitochondrion

Actin monomer: 7 nm
Fibrous subunit: 8-12 nm
Tubulin dimer: β-Tubulin, α-Tubulin monomer monomer: 25 nm
H. The Cytoskeleton

- Actin filaments consist of two chains of actin units forming a double helix.
- Actin filaments strengthen cellular structures and maintain cell shape.
- Involved with the protein myosin in muscle contraction.
- In animal cell division, forms cleavage furrow.
- Also used in cytoplasmic streaming and pseudopod extension (cell motility).
Actin filaments are thin, flexible protein threads
Actin filaments and motility

(a) Myosin motors in muscle cell contraction

(b) Amoeboid movement

(c) Cytoplasmic streaming in plant cells
A structural role of Actin filaments

Intestinal microvilli
Actin
H. The Cytoskeleton

- Intermediate filaments are formed of keratins and add strength to cell structure.
- Anchorage of nucleus and other organelles.
- Formation of nuclear lamina, foundation under nuclear envelope.
- Maintain attachments in multicellular organisms through desmosome anchoring.
Intermediate filaments are rope-like twisted strands of protein.

Eight tetramers twisted into a ropelike filament.
Plectin (green) is a cross-linking protein that binds intermediate filaments (blue) to other cytoskeleton networks like microtubules (red).
Intermediate filaments support and strengthen the nuclear envelope via the nuclear lamina.
H. The Cytoskeleton

• Microtubules are composed of dimers of the protein tubulin, and can lengthen and shorten.

• Eukaryotic Cilia and flagella both have a characteristic $9 + 2$ pattern of microtubules.

• They usually grow out of an organized structure, like a basal body or centrosome.
Microtubules are hollow tubes of tubulin
H. The Cytoskeleton

• Movements of cilia and flagella are due to binding of the motor protein dynein to microtubules.

• Microtubules also bind motor proteins that move organelles through the cell.
Ultrastructure of a eukaryotic flagellum or cilium

(a) Basal Body

(b) 0.1 μm

(c) Plasma membrane

Outer microtubule doublet
Dynein arms
Central microtubule
Radial spoke

(d) 0.1 μm

Triplets
How dynein “walking” moves cilia and flagella

(A) IN ISOLATED DOUBLET MICROTUBULES: DYNEIN PRODUCES MICROTUBULE SLIDING

(B) IN INTACT FLAGELLUM: DYNEIN CAUSES MICROTUBULE BENDING
(a) Dynein

- Direction of movement
- Microtubule doublet
- **End**

(b) Kinesin

- Direction of movement
- Vesicle or organelle
- Microtubule of cytoskeleton
- **End**
H. The Cytoskeleton

- Centrioles, made up of fused triplets of microtubules, are involved in the distribution of chromosomes during nuclear division.
Centrosome containing a pair of centrioles
Spindle formation during mitosis
I. Extracellular Structures

- Materials external to the plasma membrane provide protection, support, and attachment for cells in multicellular systems.

- Cell walls of plants consist principally of cellulose embedded in other polysaccharides and proteins forming multiple layers.

- They are pierced by plasmodesmata that join the cytoplasm of adjacent cells.
Plant cell walls

- Plant cell walls
- Vacuole
- Cytosol
- Plasma membrane
- Primary wall
- Middle lamella
- Secondary wall
- Plasmodesmata
- Cell walls
- Interior of cell
- Plasma membranes
- Plasmodesmata

Cell 1
- Primary wall
- Three layers of secondary wall
- Middle lamella

Cell 2
- 1 µm
- 0.5 µm
I. Extracellular Structures

• In multicellular animals, the extracellular matrix consists of different proteins, including proteoglycan. In bone and cartilage, collagen predominates.
Extracellular matrix (ECM) of an animal cell

ECMs contain glycoproteins (e.g., collagen, proteoglycan and fibronectin)