Lecture Series 10 The Genetics of Viruses and Prokaryotes

The Genetics of Viruses and Prokaryotes

- A. <u>Using Prokaryotes and Viruses for Genetic</u> <u>Experiments</u>
- B. Viruses: Reproduction and Recombination
- C. <u>Prokaryotes: Reproduction, Mutation, and</u> <u>Recombination</u>

The Genetics of Viruses and Prokaryotes

- D. Regulation of Gene Expression in Prokaryotes
- E. Control of Transcription in Viruses
- F. Prokaryotic Genomes

A. Using Prokaryotes and Viruses for Genetic Experiments

• Prokaryotes and viruses are useful for the study of genetics and molecular biology because they contain less DNA than eukaryotes, grow and reproduce rapidly, and are **haploid**.

13.1 Common Sizes of Microorganisms					
MICROORGANISM	ТҮРЕ	TYPICAL SIZE RANGE (µm ³			
Protists	Eukaryote	5,000-50,000			
Photosynthetic bacteria	Prokaryote	5–50			
Spirochetes	Prokaryote	0.1-2.0			
Mycoplasmas	Prokaryote	0.01-0.1			
Poxviruses	Virus	0.01			
Influenza virus	Virus	0.0005			
Poliovirus	Virus	0.00001			

B. Viruses: Reproduction and Recombination

- Viruses were discovered as disease-causing agents small enough to pass through a filter that retains bacteria.
- The first to describe viruses was Beijerinck (1898), a Dutch microbial ecologist who showed that they were not killed by alcohol, did not grow on any media, and only reproduced inside a host.
- Scientists couldn't see them till advent of EM.

B. Viruses: Reproduction and Recombination

- In addition to size and shape, viruses are classified by whether they are naked or enveloped, by their genetic material, and by their host range.
- Some viruses have a lipid membrane derived from host membranes, which determines if they are enveloped or naked.
- They have a nucleic acid genome, that can be DS or SS, RNA or DNA.
- The host range can be at the level of cells, tissues or even species specific.

B. Viruses: Reproduction and Recombination

- Viruses are obligate intracellular parasites, needing the biochemical machinery of living cells to reproduce.
- Their genome is relatively small and generally codes for just a few proteins, including a protein capsid.

B. Viruses: Reproduction and Recombination

 Bacteriophages are viruses that infect bacteria. In the lytic cycle, the host cell breaks open, releasing many new phage particles. Some phages can also undergo a lysogenic cycle: their DNA is inserted into the host chromosome, where it replicates for generations. When conditions are appropriate, the lysogenic DNA exits the host chromosome and enters a lytic cycle.

B. Viruses: Reproduction and Recombination

- Some viruses have promoters for host RNA polymerase, which they use to transcribe their own genes.
- They can shut down host gene transcription and stimulate viral genome reproduction.

B. Viruses: Reproduction and Recombination

- Most RNA and DNA viruses that infect animals cause diseases. Some animal viruses are surrounded by membranes derived from host plasma membrane.
- Retroviruses have RNA genomes that they reproduce through a DNA intermediate. Others use their RNA as mRNA directly or as template for mRNA to code for enzymes and replicate their genomes without DNA.

B. Viruses: Reproduction and Recombination

- Many plant viruses are spread by other organisms, such as insects.
- Viroids are made only of RNA molecules and infect plants. They are replicated by the plant's enzymes.
- Prions are infectious chaperones that cause degenerative brain diseases.

C. Prokaryotes: Reproduction, Mutation, and Recombination

- A bacterium can transfer its genes to another bacterium by conjugation, transformation, or transduction.
- Unlike sexual reproduction, these processes are **unidirectional** and transfer only a few genes via recombination events.
- In conjugation, a bacterium attaches to another bacterium and passes a partial copy of its DNA to the adjacent cell via a plasmid.

C. Prokaryotes: Reproduction, Mutation, and Recombination

- Plasmids are small bacterial chromosomes independent of the main chromosome.
- F plasmids carry genes allowing for conjugation, F is for fertility.
- R plasmids carry genes for antibiotic resistance, are a serious public health threat, R is for resistance.

C. Prokaryotes: Reproduction, Mutation, and Recombination

- In transformation, genes are transferred between cells when fragments of bacterial DNA are taken up by a cell from the medium.
- In transduction, phage capsids carry bacterial DNA from one bacterium to another.
- These fragments may recombine with the host chromosome, permanently adding new genes.

C. Prokaryotes: Reproduction, Mutation, and Recombination

• Transposable elements are movable stretches of DNA that can jump from place to place on the bacterial chromosome by actually moving or by making a new copy, inserted at a new location.

D. Regulation of Gene Expression in Prokaryotes

- In prokaryotes, the expression of some genes is regulated to save energy; their products are made only as needed.
- Other genes, constitutive genes, whose products are essential at all times, are constantly expressed.
- A compound that stimulates the synthesis of an enzyme needed to process it is called an inducer.

D. Regulation of Gene Expression in Prokaryotes

- An operon consists of a promoter, an operator, and structural genes. Promoters and operators do not code for proteins, but serve as binding sites for regulatory proteins.
- When a repressor protein binds to the operator, transcription of the structural genes is inhibited.

D. Regulation of Gene Expression in Prokaryotes

- The expression of prokaryotic genes is regulated by: inducible operator-repressor systems, repressible operator-repressor systems (e.g., both negative control), and systems that increase the efficiency of a promoter (e.g., positive control).
- Repressor proteins are coded by constitutive regulatory genes.

D. Regulation of Gene Expression in Prokaryotes

- The efficiency of RNA polymerase can be increased by regulation of the level of cyclic AMP, which binds to CRP (cAMP receptor protein).
- The CRP–cAMP complex then binds to a site near the promoter of a target gene, enhancing the binding of RNA polymerase and hence transcription.

13.2 The Relationships Between Positive and Negative Control in the lac Operon							
GLUCOSE	cAMP LEVELS	RNA POLYMERASE BINDING TO PROMOTER	LACTOSE	LAC REPRESSOR	TRANSCRIPTION OF LAC GENES?	LACTOSE USED BY CELLS	
Present	Low	Absent	Absent	Active and bound to operator	No	No	
Present	Low	Absent	Present	Inactive and not bound to operator	No	No	
Absent	High	Present	Present	Inactive and not bound to operator	Yes	Yes	
Absent	High	Absent	Absent	Active and bound to operator	No	No	

E. Control of Transcription in Viruses

- In bacteriophages that can undergo a lytic or a lysogenic cycle, the decision as to which pathway to take is made by operatorregulatory protein interactions.
- Two regulatory proteins, Cro and cl compete for these operators & promotors.

F. Prokaryotic Genomes

- Functional genomics relates gene sequences to functions.
- By mutating individual genes in a small genome, scientists can determine the minimal genome required for a prokaryote.

