

A. Lipids: Water-Insoluble Molecules

- Lipids can form large biological molecules, but these aggregations are NOT chemically polymers because individual units are not linked by covalent bonds.
- Share the common trait of being hydrophobic.

A. Lipids: Water-Insoluble Molecules

- Fats and oils are composed of three fatty acids covalently bonded to a glycerol molecule by ester linkages.
- Fats and oils function to efficiently store energy.

A. Lipids: Water-Insoluble Molecules

• Saturated fatty acids have a hydrocarbon chain with no double bonds. The hydrocarbon chains of unsaturated fatty acids have one or more double bonds that bend the chain, making close packing less possible.

A. Lipids: Water-Insoluble Molecules

- Phospholipids have a hydrophobic hydrocarbon "tail" and a hydrophilic phosphate "head."
- Phospholipids form the core of biological membranes.

A. Lipids: Water-Insoluble Molecules

• In water, the interactions of the hydrophobic tails and hydrophilic heads generate a phospholipid bilayer two molecules thick. The head groups are directed outward, interacting with surrounding water. Tails are packed in the interior.

A. Lipids: Water-Insoluble Molecules

 Carotenoids trap light energy in green plants. β-Carotene can be split to form vitamin A, a lipid vitamin.

A. Lipids: Water-Insoluble Molecules

- Some lipids are steroids and function as hormones. Cholesterol is synthesized by the liver and has a role in some cell membranes, as well as in the digestion of other fats.
- Some lipids function as vitamins, required for normal functioning, must be acquired from the diet.

B. Macromolecules: Giant Polymers

- Macromolecules have specific threedimensional shapes. Different functional groups give local sites on macromolecules specific properties.
- Monomers are joined by condensation reactions. Hydrolysis reactions break polymers into monomers.

$\mathcal{J}.1$ The Building Blocks of Organisms					
MONOMER	SIMPLE POLYMER	COMPLEX POLYMER			
Amino acid	Peptide or oligopeptide	Polypeptide			
Nucleotide	Oligonucleotide	Nucleic acid			
Monosaccharide	Oligosaccharide	Polysaccharide			

C. Carbohydrates: Sugars and Sugar Polymers

- All carbohydrates contain carbon bonded to H and OH groups. $\ensuremath{\left[CH_2 O \right]}_N$
- Hexoses are monosaccharides that contain six carbon atoms.
- Monosaccharides are simple sugars.
 - Can be used for fuel.
 - Can be converted into other organic molecules.
 - Can be combined into polymers.

The structur	The structure and classification of some monosaccharides					
		Triose sugars (C ₃ H ₆ O ₃)	Pentose sugars (C ₅ H ₁₀ O ₅)	Hexose (C ₆ H	sugars ₁₂ 0 ₆)	
	Aldoses	H O H O H O H O H H O H Glyceraldehyde	H _ O H _ C _ OH H _ Ribose	H_C_OH H_C_OH H_C_OH H_C_OH H_C_OH H_C_OH H_C_OH	H O H C - OH HO C - H HO C - H H C - OH H C - OH H Galactose	
	Ketoses	H H C O H C O H C O H H Dihydroxyacetone	H H-C-OH C-O H-C-OH H-C-OH H-C-OH H Ribulose	H - C C HO - C H - C H - C H - C	— ОН — О — Н — ОН — ОН 4 tose	

C. Carbohydrates: Sugars and Sugar Polymers

• Glycosidic linkages may have either α or β orientation in space. They covalently link monosaccharides into larger units.

C. Carbohydrates: Sugars and Sugar Polymers Cellulose, a polymer, is formed by glucose units linked by β-glycosidic linkages between carbons 1 and 4.

C. Carbohydrates: Sugars and Sugar Polymers

- Starches are formed by α -glycosidic linkages between carbons 1 and 4 and are distinguished by amount of branching through glycosidic bond formation at carbon 6.
- Glycogen contains α -1,4 glycosidic linkages and is highly branched.

C. Carbohydrates: Sugars and Sugar Polymers

• Chemically modified monosaccharides include the sugar phosphates and amino sugars. A derivative of the amino sugar glucosamine polymerizes to form the polysaccharide chitin.

- Chitin, another important structural polysaccharide
 - Is found in the exoskeleton of arthropods
 - Can be used as surgical thread

Chitin forms the exoskeleton of arthropods. This cicada is molting, shedding its old exoskeleton and emerging in adult form. Chitin is used to make a strong and flexible surgical thread that decomposes after the wound or incision heals.

D. Proteins: Amazing Polymers of Amino Acids

- Functions of proteins include support, protection, catalysis, transport, defense, regulation, and movement. They sometimes require an attached prosthetic group.
- Twenty amino acids are found in proteins. Each consists of an amino group, a carboxyl group, a hydrogen, and a side chain bonded to the α carbon atom.

D. Proteins: Amazing Polymers of Amino Acids

• Side chains of amino acids may be charged, polar, or hydrophobic. SH groups can form disulfide bridges.

D. Proteins: Amazing Polymers of Amino Acids Polypeptide chains of proteins are folded into specific three-dimensional shapes. Primary, secondary, tertiary, and quaternary structures are possible.

D. Proteins: Amazing Polymers of Amino Acids

- The primary structure of a protein is the sequence of amino acids bonded by peptide linkages.
- Secondary structures are maintained by hydrogen bonds between atoms of the amino acid residues.

D. Proteins: Amazing Polymers of Amino Acids

- The tertiary structure is generated by bending and folding of the polypeptide chain. This results from interactions between amino acids and R groups.
- The quaternary structure is the arrangement of polypeptides in a single functional unit consisting of more than one polypeptide subunit.

D. Proteins: Amazing Polymers of Amino Acids

- Weak chemical interactions are important in the binding of proteins to other molecules.
- Proteins denatured by heat, acid, or chemicals lose tertiary and secondary structure and biological function.

D. Proteins: Amazing Polymers of Amino Acids

- Chaperonins assist protein folding by preventing binding to inappropriate ligands.
- They also help to shape proteins with special needs regarding hydrophobic and hydrophilic interactions.

E. Nucleic Acids: Informational Macromolecules

• In cells, DNA is the hereditary material. DNA and RNA play roles in protein formation.

E. Nucleic Acids: Informational Macromolecules

 Nucleic acids are polymers of nucleotides consisting of a phosphate group, a sugar, and a nitrogen-containing base. The DNA bases are adenine, guanine, cytosine, and thymine. In RNA uracil substitutes for thymine and ribose substitutes for deoxyribose.

3.3 Distinguishing RNA from DNA					
NUCLEIC ACID	SUGAR	BASES			
RNA	Ribose	Adenine			
		Cytosine			
		Guanine			
		Uracil			
DNA	Deoxyribose	Adenine			
		Cytosine			
		Guanine			
		Thymine			

E. Nucleic Acids: Informational Macromolecules

- In the nucleic acids, bases extend from a sugar–phosphate backbone using the phosphodiester linkage.
- DNA and RNA information resides in their base sequences.

E. Nucleic Acids: Informational Macromolecules

- RNA is single-stranded.
- DNA is a double-stranded helix with complementary, hydrogen-bonded base pairing between adenine and thymine and guanine and cytosine. The two strands run in opposite 5' to 3' directions.

E. Nucleic Acids: Informational Macromolecules

- Comparing the DNA base sequences of different living species provides information on evolutionary relatedness.
- This is called molecular phylogeny.

F. The Interactions of Macromolecules

- Glycoproteins contain an oligosaccharide "label" that directs the protein to the proper cell destination. The carbohydrate groups of glycolipids are on the cell's outer surface, serving as recognition signals.
- An example of emergent properties where greater complexity is exhibited.