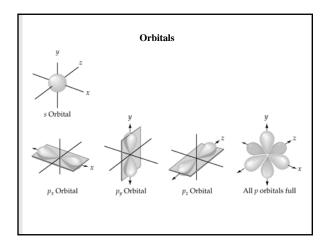
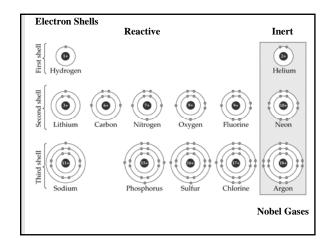
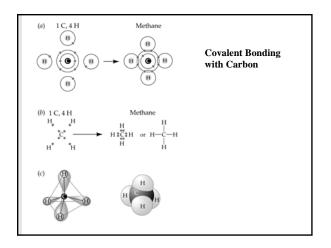

Lecture Series 2 Water as THE Biological Solvent

A. Atoms: The Constituents of Matter

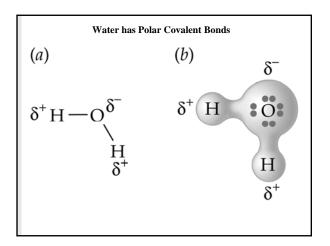
- An element is made up of only one kind of atom.
- The number of protons identifies the element.
- Isotopes differ in the number of neutrons.

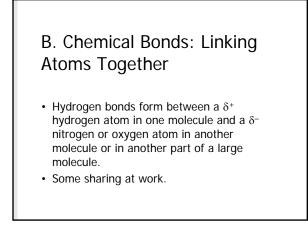


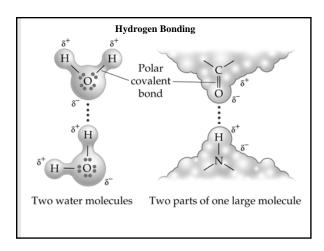



A. Atoms: The Constituents of Matter

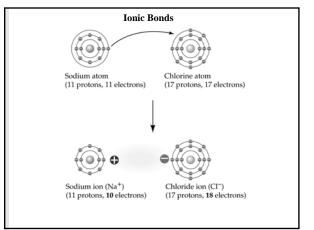
- Electron behavior determines chemical bonding.
- Electrons are distributed in shells of "orbitals" containing a maximum of two.
 - Octet Rule: stable molecules have 8 electrons in outer shell.

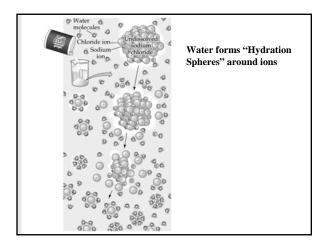

2.1 Chemical Bonds an	nd Interactions		
NAME	BASIS OF INTERACTION	STRUCTURE	BOND ENERGY* (KCAL/MO
Covalent bond	Sharing of electron pairs	н о _N_С_	50-110
Hydrogen bond	Sharing of H atom	$\stackrel{H}{\stackrel{ }{\scriptstyle \delta} \delta } $ $\stackrel{N}{\scriptstyle -N-H} \cdots 0 = C -$	3–7
Ionic interaction	Attraction of opposite charges	-N-H 0-C-	3–7
van der Waals interaction	Interaction of electron clouds	н-н	1
Hydrophobic interaction	Interaction of nonpolar substances		


2.2 Covalent Bonding Capabilities of Some Biologically Important Elements				
ELEMENT	NUMBER OF COVALENT BONDS			
Hydrogen	1			
Oxygen	2			
Sulfur	2			
Nitrogen	3			
Carbon	4			
Phosphorus	5			

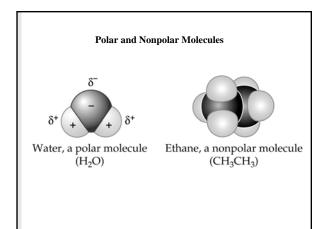

B. Chemical Bonds: Linking Atoms Together

- Nonpolar covalent bonds form when the electronegativities of two atoms are approximately equal. When atoms with strong electronegativity (such as oxygen) bond to atoms with weaker electronegativity (such as hydrogen), a polar covalent bond forms, in which one end is δ^+ and the other is δ^- .
- Covalent bonds involve sharing of electrons.


2.3 Some Electronegativities		
LEMENT	ELECTRONEGATIVITY	
Oxygen	3.5	
Chlorine	3.1	
Nitrogen	3.0	
Carbon	2.5	
Phosphorus	2.1	
Hydrogen	2.1	
Sodium	0.9	
Potassium	0.8	



B. Chemical Bonds: Linking Atoms Together

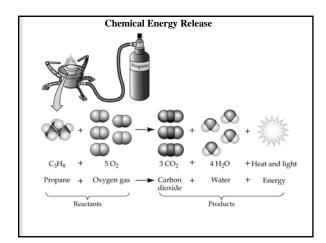

- Ions, electrically charged bodies, form when an atom gains or loses one or more electrons. Ionic bonds are electrical attractions between oppositely charged ions.
- No sharing involved!

B. Chemical Bonds: Linking Atoms Together

- Nonpolar molecules have no attraction for polar substances. They are attracted to each other by very weak bonds called van der Waals forces.
- These are very important for membranes.
 Hydrophobic vs. hydrophilic molecules.

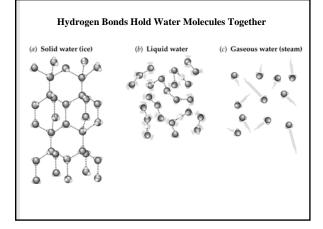
C. Eggs by the Dozen: Molecules by the Mole

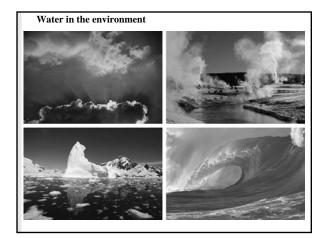
- Calculate the number of molecules by weighing: Avogadro's # = 6.023 x 10²³
- This is the weight in grams equal to a molecules combined atomic weight.
- Useful as in Biology, most reactions take place in solutions, which yields units of Molarity.



D. Chemical Reactions: Atoms Change Partners

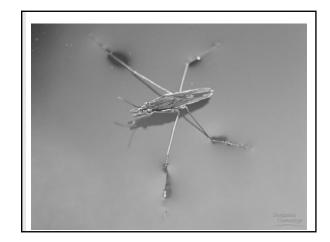
- In chemical reactions, substances change their atomic compositions and properties. Energy is either released or added. Matter and energy are not created or destroyed, but change form.
- Conservation of Mass & Energy.

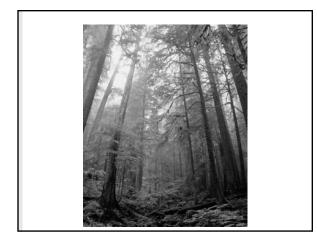

D. Chemical Reactions: Atoms Change Partners


- Combustion reactions are oxidationreduction aka "redox" reactions.
- Fuel is converted to carbon dioxide and water, while energy is released as heat and light.
- In living cells, these reactions occur in multiple steps.

E. Water: Structure and Properties

- Water's molecular structure and capacity to form hydrogen bonds give it unusual and special properties significant for life.
- These include: Phase change avoidance, Specific Heat, Cohesive and Adhesive Strength, Latent Heat of Vaporization.
- Rare Ion formation (1 in 5 x10⁸) or pH 7.0

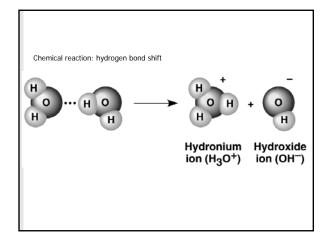


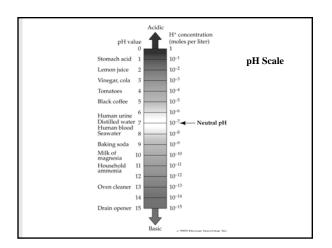


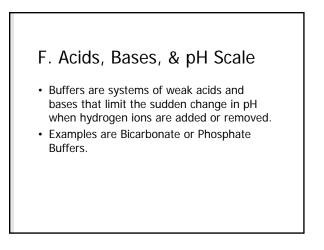


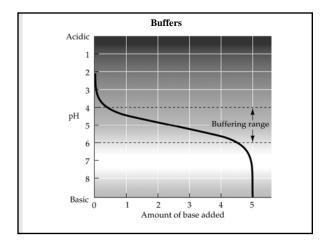
E. Water: Structure and Properties

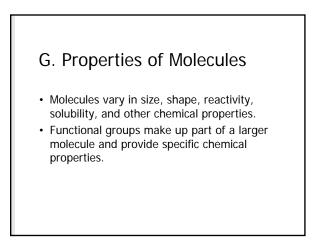
- "Cohesion" of water molecules results in a high surface tension.
- Water's high "heat of vaporization" assures cooling when it evaporates.
- Wide range of "Reynold's Numbers" encountered by organisms.



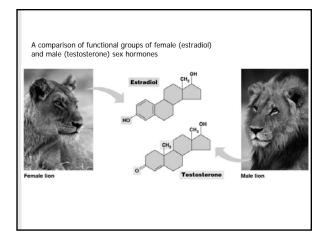

F. Acids, Bases, & pH Scale

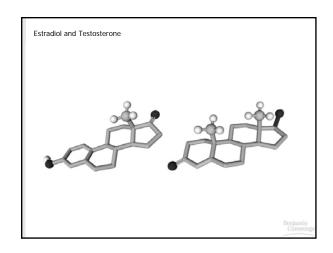

 Acids are substances that donate hydrogen ions. Bases are those that accept hydrogen ions.




F. Acids, Bases, & pH Scale

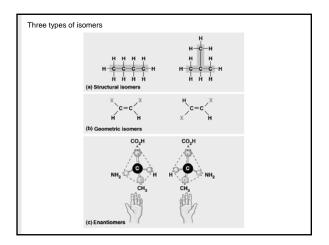
- The pH of a solution is the negative logarithm of the hydrogen ion concentration. pH = -log[H⁺]
- pH scales range from 0 to 14 as $[H^+][OH^-] = 1 \times 10^{-14}$
- Most biological solutions are between the pH range of 6 to 8.

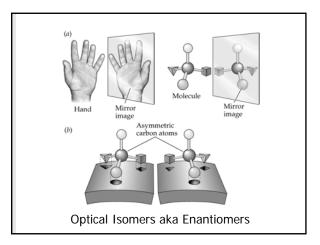


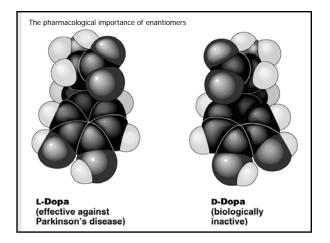


Functional group	Class of compounds	Structural formula	Example	Functional
Hydroxyl — OH	Alcohols	R-OH	H H H-C-C-OH H H Ethanol	Groups
Aldehyde — CHO	Aldehydes	R-C_H	H - C - C H H - C - C H H H	
Keto \CO	Ketones	R-C-R	$\begin{array}{c} H & O & H \\ I & I & I \\ H - C - C - C - C - H \\ H & H \\ Acetone \end{array}$	
Carboxyl —COOH	Carboxylic acids	R-COH	H H H H OH Acetic acid	

Functional group	Class of compounds	Structural formula	Example	Function
Amino — NH ₂	Amines	R-NH	H = H = H = H $H = H = H$ $H = H$	Groups
Phosphate —OPO3 ^{2–}	Organic phosphates	0 R-0-P-0- 1 0-	HO O V C I H - C - OH O H - C - O - P - O' H O' 3-Phosphoglyceric acid	
Sulfhydryl —SH	Thiols	R-SH	H H HO-C-C-SH H H Mercaptoethanol	




G. Properties of Molecules


• Structural, geometric and optical isomers have the same kinds and numbers of atoms, but differ in their structures and properties.

G. Properties of Molecules

- <u>Structural isomers</u>: variation in covalent bond arrangement such as butane and isobutane.
- <u>Geometric isomers</u>: variation in the arrangement about a double bond such as with cis or trans configurations.
- <u>Optical isomers</u>: variation in the spatial arrangement around an asymmetric carbon, resulting molecules that are mirror images.

