Answer Key to Calculations-Lab I

Dilutions Series (p. 4):

Series A:
$\mathrm{O} .5 \mathrm{~mL} /(0.5 \mathrm{~mL}+4.5 \mathrm{~mL}) * 1.0 \mathrm{~mL} /(1.0 \mathrm{~mL}+9.0 \mathrm{~mL})=0.01=\mathbf{1 . 0} * \mathbf{1 0}^{-\mathbf{2}}$
Series B:
$0.1 \mathrm{~mL} /(0.1 \mathrm{~mL}+9.9 \mathrm{~mL})=0.01=1.0 * 10^{-2}$
Series C:
$1.0 \mathrm{~mL} /(1.0 \mathrm{~mL}+4.0 \mathrm{~mL}) * 0.5 \mathrm{~mL} /(0.5 \mathrm{~mL}+9.5 \mathrm{~mL})=0.01=\mathbf{1} * \mathbf{1 0}^{-\mathbf{2}}$
Series D:
$1.0 \mathrm{~mL} /(1.0 \mathrm{~mL}+3.0 \mathrm{~mL}) * 0.5 \mathrm{~mL} /(0.5 \mathrm{~mL}+12.0 \mathrm{~mL})=0.01=\mathbf{1 0}^{-2}$

Molarity Problems (p. 6):

How would you make 500 mL of 1 M NaCl ?
\rightarrow Add 29.25 g NaCl to 500 mL water
$58.5 \mathrm{~g} \mathrm{NaCl} / \mathrm{mol} * 1 \mathrm{M}(\mathrm{mol} / \mathrm{L}) * 500 \mathrm{~mL} * 1 \mathrm{~L} / 1000 \mathrm{~mL}=29.25 \mathrm{~g} \mathrm{NaCl}$
How would you make 300 mL of 2.5 M NaCl ?
\rightarrow Add 43.88 g NaCl to 300 mL water
$58.5 \mathrm{~g} \mathrm{NaCl} / \mathrm{mol} * 2.5 \mathrm{M}(\mathrm{mol} / \mathrm{L}) * 300 \mathrm{~mL} * 1 \mathrm{~L} / 1000 \mathrm{~mL}=43.88 \mathrm{~g} \mathrm{NaCl}$
How would you make 100 mL of 50 mM NaCl ?
\rightarrow Add $2.92 * 10^{-1} \mathrm{~g} \mathrm{NaCl}$ to 100 mL water
$58.5 \mathrm{gNaCl} / \mathrm{mol} * 50 \mathrm{mM} * 1 \mathrm{M} / 1000 \mathrm{mM} * 100 \mathrm{~mL} * 1 \mathrm{~L} / 1000 \mathrm{~mL}=2.92 * 10^{-1} \mathrm{~g} \mathrm{NaCl}$
Molarity problems (p. 7):
500 mL of 50 uM NaCl from 500 mM NaCl ?
\rightarrow Add 0.05 mL stock solution to 499.95 mL water
-Final concentration $=50 \mathrm{uM} * 1 \mathrm{mM} / 1000 \mathrm{uM}=0.05 \mathrm{mM}$
-Dilution factor $=500 \mathrm{mM} / 0.05 \mathrm{mM}=10,000$
-Volume of stock sol'n used $=500 \mathrm{~mL} / 10,000=0.05 \mathrm{~mL}$
$100 \mathrm{~mL} 5 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA from 200 mM NaCl and 100 mM EDTA?
\rightarrow Add 2.5 mL NaCl stock and 1 mL EDTA stock to 96.5 mL water
-Dilution factor $\mathrm{NaCl}=200 \mathrm{mM} \mathrm{NaCl} / 5 \mathrm{mM} \mathrm{NaCl}=40$
-Volume of Stock NaCl used $=100 \mathrm{~mL} / 40=2.5 \mathrm{~mL}$
-Dilution Factor for EDTA $=100 \mathrm{mM}$ EDTA/ 1 mM EDTA $=100$
-Volume of stock EDTA used $=100 \mathrm{~mL} / 100=1 \mathrm{~mL}$
$500 \mathrm{~mL} 25 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA, $1.5 \mathrm{mM} \mathrm{MgCl}_{2}$ from $500 \mathrm{mM} \mathrm{NaCl}, 500 \mathrm{mM}$ EDTA, $15 \mathrm{mM} \mathrm{MgCl}_{2}$?
\rightarrow Add $\mathbf{2 5 m L} \mathbf{~ N a C l}$ stock, 10 mL EDTA stock, and $\mathbf{5 0 m l} \mathrm{MgCl}_{\mathbf{2}}$ stock to $\mathbf{4 1 5 m L}$ water
-Dilution Factor for $\mathrm{NaCl}=500 \mathrm{mM} \mathrm{NaCl} / 25 \mathrm{mM} \mathrm{NaCl}=20$
-Volume of Stock NaCl used $=500 \mathrm{~mL} / 20=25 \mathrm{~mL}$
-Dilution Factor for EDTA $=500 \mathrm{mM}$ EDTA $/ 10 \mathrm{mM}$ EDTA $=50$
-Volume of Stock EDTA used $=500 \mathrm{~mL} / 50=10 \mathrm{~mL}$
-Dilution factor for $\mathrm{MgCl}_{2}=15 \mathrm{mM} \mathrm{MgCl} 2 / 1.5 \mathrm{mM} \mathrm{MgCl} 2=10$
-Volume of stock MgCl_{2} used $=500 \mathrm{~mL} / 10=50 \mathrm{~mL}$

