Bio 201 Lab: Review for Final

Hints for lab final:

This review sheet is mainly a compilation of the weekly 'To Know' lists from labs this quarter. It is not meant to be all encompassing, but if you study the terms on this list and the concepts and calculations associated with them, you should be well prepared for this lab final. I am anticipating 3 stations for the lab final. The rest of the questions will be similar to quiz questions, so review your old quizzes. I will have quiz and worksheet keys available to you.

Molecular models/ Techniques and calculations

Molecules:

- \rightarrow chirality
- \rightarrow basic a.a. structure
- \rightarrow L vs. D a.a. configuration
- \rightarrow D-Glucose structure, ring and chain
- \rightarrow Fischer and perspecive projections of both molecules
- \rightarrow polymers formed by each type of monomer
- \rightarrow starch vs. cellulose, curved vs. straight
- \rightarrow naturally occurring configuration (D/L)

Techniques/calculations:

- \rightarrow dilution factors for serial dilutions
- \rightarrow pipetting, pipets
- \rightarrow molarity calculations
- \rightarrow Metric conversions

Enzyme Lab

- \rightarrow importance of tertairy structure, active site
- \rightarrow effects of pH, temp on enzyme activity/ structure
- \rightarrow terms: substrate/ product

Microscopy

- \rightarrow Calculations:
 - -calibrating micrometers
 - -converting specimen size from ou to metric units
- → Physical appearance of specimens: amoeba, paramecium, *Elodea*, onion, volvox, *Anabena*, *Oscillatoria*
- → Read Lab for next week, Bacterial genetics: Read about Beadle and Tatum's experiment in text book, highly interesting, not too long

Bacterial genetics

- \rightarrow biosynthetic pathways
- \rightarrow Beadle and Tatum (p.218-221, Purves et al.)
- \rightarrow Reasons to dilute bacterial cultures
- \rightarrow dilution calculations, working backwards (see handout, lab manual)
- \rightarrow Growth curve, phases of growth (lag, exponential, stationary)
- \rightarrow Importance of different media

 \rightarrow Logic behind experiment:

-*E.coli* cannot grow/repro. w/o tryptophan -each mutant (B, C, E) deficient in only one enzyme in trytophan pathway -If deficient in e1, means blocked here in pathway, so cannot produce intermediate product = no tryptophan = no growth -If we supplement *E.coli*'s diet with substance then it can grow b/c stepwise nature of pathway, precursor, intermediates are like building blocks

Diffusion/ Osmosis

- \rightarrow Terms
- 1) hyper/hypo/isoosmotic 6) plasmolysis
- 2) diffusion 7) turgor pressure
- 3) osmosis 8) lysis
- 4) semi-permeable membrane 9) crenate
- 5) Brownian movement
- \rightarrow Be able to predict water movement in a system, depending on solute concentrations
- → Remember, some of these terms are relative...know what part of system you are referring to when using terms: hyper/hypo/isoosmotic

DNA gel electrophoresis

- \rightarrow RFLP
- \rightarrow How does gel electrophoresis separate DNA?
- → palindromic
- \rightarrow Homozygous/heterozygous
- → Dominant/recessive
- \rightarrow How to interpret data (i.e., what you see on the gel)
- \rightarrow Standard curves

The Hill Reaction

- \rightarrow Controls?
- \rightarrow How does DCPIP work?
- \rightarrow Photosystems
- \rightarrow What is the Hill Reaction?
- \rightarrow How does atrazine work?