From DNA to Protein: Genotype to Phenotypes

1. Genes and the Synthesis of Polypeptides

A. Some hereditary diseases feature defective enzymes

- B. The one-gene, one-polypeptide hypothesis
- 2. DNA, RNA, and the Flow of Information
 - A. RNA differs from DNA
 - B. Information flows in one direction when genes are expressed
 - C. RNA viruses modify the central dogma
- 3. Transcription: DNA-Directed RNA Synthesis

A. Initiation of transcription requires a promoter and an RNA polymerase

- B. RNA polymerases elongate the transcript
- C. Transcription terminates at particular base sequences
- 4. The Genetic Code
 - A. The genetic code is degenerate but not ambiguous

B. Biologists broke the genetic code by translating artificial messengers

- 5. The Key Players in Translation
 - A. Transfer RNAs carry specific amino acids
 - B. Activating enzymes link the right tRNAs and amino acids
 - C. The ribosome is the staging area for translation

Lecture 8.1

6. Translation: RNA-Directed Polypeptide Synthesis

- A. Translation begins with an initiation complex
- B. The polypeptide elongates from N terminus
- C. Elongation continues and the polypeptide grows
- D. A release factor terminates translation
- 7. Regulation of Translation
 - A. Some antibiotics work by inhibiting translation
 - B. Polysome formation increases the rate of protein synthesis
 - C. A signal sequence leads a protein through the ER
- 8. Mutations: Heritable Changes in Genes
 - A. Point mutations may be silent, missense, nonsense, or frame-shift
 - B. Chromosomal mutations are extensive changes
 - C. Some chemicals induce mutations and cancer
 - D. Mutations are the raw material of evolution