AEM Accepted Manuscript Posted Online 11 March 2016 Appl. Environ. Microbiol. doi:10.1128/AEM.00624-16 Copyright © 2016 Fullerton and Moyer. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Comparative Single-Cell Genomics of Chloroflexi from the

Okinawa Trough Deep Subsurface Biosphere

Heather Fullerton, Craig L. Moyer*

Department of Biology, Western Washington University, Bellingham WA 98225

*Corresponding author E-mail address: <u>cmoyer@hydro.biol.wwu.edu</u>

Running Title: *Chloroflexi* from a hydrothermal subsurface biosphere

Keywords: *Chloroflexi*, Single-Cell Genomics, Hydrothermal Vents, Subsurface Biosphere, Reductive Dehalogenation

1 ABSTRACT

2	Chloroflexi SSU rRNA gene sequences are frequently recovered from subseafloor
3	environments, but the metabolic potential of this phylum is poorly understood. The
4	phylum Chloroflexi is represented by isolates with diverse metabolic strategies including,
5	anoxic phototrophy, fermentation and reductive dehalogenation; therefore, function
6	cannot be attributed to these organisms based solely on phylogeny. Single cell genomics
7	can provide metabolic insights into uncultured organisms, like the deep-subsurface
8	Chloroflexi. Nine SSU rRNA gene sequences were identified from single-cell sorts of
9	whole-round core material collected as part of IODP Expedition 331 (Deep Hot
10	Biosphere) from the Okinawa Trough at Iheya North hydrothermal field. Previous studies
11	of subsurface Chloroflexi single amplified genomes (SAGs) suggest heterotrophic or
12	lithotrophic metabolisms and provide no evidence for growth by reductive
13	dehalogenation. Our nine Chloroflexi SAGs (of which seven are Anaerolineales) indicate
14	that in addition to encoding genes for the Wood-Ljungdahl pathway, exogenous carbon
15	sources can be actively transported into the cells. At least one subunit for the pyruvate
16	ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can
17	provide a link between the Wood-Ljungdahl pathway and other carbon anabolic
18	pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive
19	dehalogenase homologous (rdhA) gene; suggesting reductive dehalogenation is not
20	limited to the Dehalococcoidia class of Chloroflexi.

21 IMPORTANCE

22	Through the use of single amplified genomes (SAGs) we have extended the
23	metabolic potential of an understudied group of subsurface microbes, the Chloroflexi.
24	These microbes are frequently detected in the subsurface biosphere though their
25	metabolic capabilities have remained elusive. In contrast to previously examined
26	Chloroflexi SAGs, our genomes (several are of the order Anaerolineales) were recovered
27	from a hydrothermally driven system and therefore provide a unique window into the
28	metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene
29	(rdhA) has been directly linked to marine subsurface Chloroflexi suggesting reductive
30	dehalogenation is not limited to the class Dehalococcoidia. This discovery expands the
31	nutrient cycling and metabolic potential present within the deep subsurface and provides
32	functional gene information relating to this enigmatic group.

33 INTRODUCTION

The phylum Chloroflexi, colloquially known as the green non-sulfur bacteria, has 34 35 been recognized as both ubiquitous and diverse by small subunit (SSU) rRNA from 36 molecular studies (1). Environmental molecular microbial surveys have shown 37 Chloroflexi to be abundant in marine, intertidal and freshwater surface and subsurface 38 sediments (2); however, this phylum has only a few cultured representatives (3). The 39 cultured representatives of this group have a wide range of metabolic activities, including 40 fermentation, anoxygenic photosynthesis, nitrite-oxidation and reductive dehalogenation 41 (3-7). Due to the metabolic diversity across this phylum, metabolic activity cannot be 42 inferred based solely on phylogeny (Select cultured representatives listed in Table S1, 43 along with their metabolic classifications). 44 In comparisons among *Chloroflexi* containing sites that were rich in methane 45 hydrates and organic carbon off the Peru and Cascade Margins, Chloroflexi SSU rRNA 46 gene sequences were more numerous at the organic rich sites (8). A metagenomic study 47 of the Peru Margin showed *Chloroflexi* to be present at a broad range of depths and 48 compose 12-16% of total genes identified (9). In addition to the Peru Margin, 49 Caldilineae- and Anaerolineae-related sequences comprised a major portion of the 50 subsurface bacterial community within a forearc basin off Sumatra and the Black Sea 51 (10). Unlike their photosynthesizing or terrestrial relatives, none of these deep-sea strains 52 are yet in culture, and so virtually nothing is known about their metabolic potential (11). 53 Chloroflexi have been previously identified in a subsurface hydrothermal habitat at Iheya 54 North, Mid-Okinawa Trough (12). It is likely that similar subsurface Chloroflexi have the

55 potential for growth since *Chloroflexi* sequences were recovered from an *in situ*

56 colonization experiment within a borehole, indicating recent growth on previously

57 uninhabited surfaces (13).

58 With the advances in single cell genomics it is no longer required to have axenic 59 bacterial cultures to obtain an individual genome and in some cases, recovered single 60 amplified genomes (SAGs) have been reported to be more than 90% complete (14, 15). 61 The SAG approach can reveal the metabolic function of the abundant and frequently 62 detected Chloroflexi for comparison to the sequenced photosynthetic or terrestrial 63 isolates. Previously studied Chloroflexi SAGs belong to the class Dehalococcoidia and 64 contain genes for autotrophic growth via the reductive acetyl-CoA pathway (16, 17). 65 Dehalococcoidia SAGs from the Peru Trench, Dsc1 and DscP2, were recovered from 7.3 66 meters below seafloor (mbsf) at a seawater depth of 5086 m from IODP Site 1230 and a 67 single SAG from a depth of 16.3 m in Aarhus Bay, SCGC AB-539-J10 (abbreviated to 68 DEH-J10) was recovered at just 0.16 mbsf. Therefore, Dsc1 and DscP2 are the only deep 69 subsurface *Chloroflexi* that have been analyzed for their metabolic potential prior to this 70 study. Previously, *rdhA* genes have been identified from isolates within the order 71 Dehalococcoidales of the phylum Chloroflexi (18) or from dehalogenating enrichment 72 cultures (19). Furthermore, isolated strains of Dehalococcoides mccartyi depend on 73 dehalogenation as their sole means of respiration via the RdhA proteins (18). No rdhA 74 genes were identified in DscP2, Dsc1 or DEH-J10 and it was unclear if these organisms 75 had heterotrophic or autotrophic metabolisms (16, 17). In marine subsurface sediments 76 rdhA homologues have been detected by PCR and metagenomic studies from around the 77 Pacific Ocean, as well as dehalogenation activity has been shown in sediment

78	microcosms, suggesting organohalide respiration is an important energy-yielding
79	pathway in subseafloor microbial ecosystems (20, 21).
80	Hydrothermal vents circulate reduced chemicals and seawater providing niches
81	for microbes that can support a larger biomass than the surrounding ocean floor (22)
82	making vent fields some of the most biologically active regions in the deep-sea (23).
83	These systems harbor diverse microbial communities in and around vent orifices, and
84	within surrounding subsurface environment. The Okinawa Trough contains both
85	hemipelagic and volcanic sediments, sometimes over ~1 km thick, providing
86	hydrothermal systems with abundant H ₂ , CO ₂ , CH ₄ , NH ₄ , H ₂ S, and CO derived from
87	sedimentary organic matter and from magmatic gases. The Iheya North hydrothermal
88	field is an area of diffuse flow surrounding a focused flow high-temperature vent system,
89	which makes it a promising environment to study functionally active and metabolically
90	diverse microbes (24, 25). The abundant supply of energy and carbon supplied through
91	hydrothermal vent circulation provide an ideal location to study elusive microbes, such as
92	the Chloroflexi, within the subsurface biosphere.
93	Five locations were chosen for drilling at Iheya North Hydrothermal field
94	(Figure 1) as part of the Integrated Ocean Drilling Program (IODP) expedition 331 (Deep
95	Hot Biosphere). Based on the initial heat flow results, a hydrodynamic model of fluid
96	flow throughout the Iheya North Hydrothermal field was documented, where variation in
97	chemical and physical processes including the formation of both brine and vapor-rich
98	hydrothermal fluids (i.e., phase separation and phase-partitioning) likely generated by
99	underlying high temperatures coupled with a complex hydrogeologic structure.
100	Recovered drill cores were described as interbedded hemipelagic muds with strongly

101 pumiceous volcanoclastic sediments; however, there was minimal hydrothermal 102 alteration in the cooler zones, generally within the upper 30 meters below seafloor 103 (mbsf), showing any evidence of microbial activity (24, 25). The cooler sites chosen for 104 this study were (i) Site C0015 located \sim 600 meters northwest from the active vents on the 105 crest of a hill that represented a potential diffuse (i.e., high seawater mixing) outflow 106 migration path for hydrothermal fluids and (ii) Site C0017 located ~1550 meters to the 107 east of the active vents representing an area of hydrothermal recharge or an inflow path 108 for ambient seawater (24, 25). 109 We examined and compared nine SAGs belonging to the phylum Chloroflexi 110 recovered from the Iheya North hydrothermal field in the Mid-Okinawa Trough during 111 the IODP expedition 331 (24, 25). In contrast to previously studied Chloroflexi SAGs, an 112 rdhA gene was identified in an Anaerolineales representative. This study expands the 113 known metabolic repertoire of this elusive group of microbes and provides insights as to 114 their metabolic potential. 115 **MATERIAL AND METHODS** 116 Sample Collection 117 Subsurface sediments were collected on IODP expedition 331 (Deep Hot Biosphere) from September 1st through October 4th, 2010 (Figure 1). On board 118 119 contamination testing from Sites C0015 (126°53'E, 27°47'N, Hole B, section 1H-5, 5.6 120 mbsf) and C0017 (126°55'E, 27°47'N, Hole C, section 1H-7, 26.6 mbsf) found no 121 indication of interior core contamination using fluorescent microspheres (both Holes

- 122 C0015B and C0017C) and perfluorocarbon tracer (Hole C0017C only). The sample from
- 123 Hole C0017C was also verified by PCR-generated phylotype comparisons based on 97%

7

AEM

similarity to phylotypes obtained from drilling mud at a contamination level of 1% or less(26). Subsamples were aseptically collected from the interior of whole-round cores and

126 stored in cryovials with 27% glycerol (v/v) at -80°C.

127 Single Cell Source

128 Core depths were chosen from Sites C0015 and C0017 that were characterized as 129 weakly-oxidized pumiceous gravels with no detected sulfide mineralization and less than 130 0.1 wt% total organic carbon, total nitrogen and total sulfur (25). Selected samples for 131 single cell genomes were from subsurface depths of 5.6 mbsf from Hole C0015B and 132 from 26.6 mbsf from Hole C0017C. Temperatures were estimated at ~10.5°C for 133 C0015B and ~8.1°C for C0017C and at these depths. Details on geochemistry and 134 lithography have been previously described (12, 24, 25). 135 Single-Cell Sorting, Amplification, Sequencing and Annotation 136 Samples from Sites C0015 and C0017 (Figure 1) were diluted with 1 ml of filter-137 sterilized artificial seawater (27) making a slurry, then passed through a 90 µm nylon 138 mesh filter twice, and centrifuged at \sim 500 x g for 2 min to produce a particle-free cell 139 suspension. This suspension was then processed using fluorescence-activated single-cell 140 sorting at the Single Cell Genome Center (SCGC) at Bigelow Laboratory for Ocean 141 Sciences. Single-cell sorting and multiple displacement amplification (MDA) has been 142 previously described (28). The amplified SSU rRNA gene sequences (27F/907R) were 143 classified using the RDP online classifier (28, 29). Based on their SSU rRNA gene 144 identity, nine Chloroflexi SAGs (of the total 29 unique MDA reactions identified after 145 cell sorting) were chosen for whole genome sequencing. These SAGs were sequenced, 146 assembled and contamination checked by the SCGC, using previously well described

147 parameters (28, 29). Assembly was done using SPAdes v.3.0.0 (30). All contigs were 148 compared to ensure no cross-contamination among SAGs and the NCBI nt database, 149 which was followed by tetramer principal component analysis as previously described 150 (31-33). These analyses revealed no contamination. The full name for each of the SAGs 151 has been shortened, e.g., Anaerolineales bacterium SCGC AC-711-B22 to An-B22. 152 Phylogeny has been shortened from Anaerolineales to An, Dehalococcoidales to De and 153 Thermoflexales to Th. The assembled genomes were annotated using RAST (34). Gene 154 annotations were compared to NCBI GenBank, via BLASTn and results can be found in 155 Tables S2-S4. 156 The Anaerolineales SAGs were compared to the genomes of Anaerolinea 157 thermophila UNI-1 (GenBank accession number NC 014960) and the single 158 Thermoflexales SAG to Thermoflexus hugenholtzii JAD2 (NCBI BioProject 159 PRJNA195829) as these were determined to be their closest respective relatives. Type 160 strain A. thermophila UNI-1 was isolated from an anaerobic granular sludge reactor 161 treating fried soybean-curd manufacturing waste water in Japan (35), while type strain 162 Thermoflexus hugenholtzii JAD2 was isolated from the sediment of Great Boiling Spring 163 in Nevada, USA (36). Both are considered thermophilic, Gram-negative, non-164 sporeforming, heterotrophic bacteria that grow in multicellular filaments (36, 37). 165 Phylogenetic Analysis 166 SSU rRNA gene sequences and phylogenetic relatives were aligned using the 167 Silva SINA aligner (38). For the rdhA analysis, amino acids were aligned using 168 ClustalW, within Geneious (39, 40). The resulting alignments were manually screened,

169 then used to create a phylogenic consensus tree using the MrBayes within Geneious (41).

AEM

171	frequency of 200. Priors were set with an unconstrained branch length. Average
172	nucleotide identity (ANI) was calculated, of the SAGs and selected genomes, with the
173	BLAST parameters as previously described (42).
174	Genome Completeness Estimates
175	Genome completeness estimates were determined with BLASTP of predicted
176	amino acid sequences against a set of single copy core genes (43). To be considered
177	valid, all proteins must have at least 30% identity over at least 30% of the length of the
178	core gene (44). The core gene group is made of 66 previously established genes
179	belonging to a non-redundant list as examined by gene ontology (GO) annotations (44,
180	45).
181	Accession Numbers
182	The SSU rRNA gene sequences obtained from MDA have been submitted to
183	NCBI GenBank database (accession numbers KT119838-KT119846). All SAGs have
184	been made public in the IMG Database (IMG Submission IDs: 69642-69649, 68650).
185	RESULTS AND DISCUSSION
186	Single Cell Sorts
187	Classification of SSU rRNA gene sequences by taxonomic analysis showed
188	Chloroflexi to be the most abundant within these two subsurface habitats with respect to
189	the total single cells recovered. Nine Chloroflexi SSU rRNA gene sequences were
190	recovered; four from Hole C0015B and five from Hole C0017C. Of the nine Chloroflexi
191	detected, seven belonged to the order Anaerolineales, with one each belonging to the
192	order Dehalococcoidales and Thermoflexales (Table 1). Phylogenetic placement was not

The HKY85 substitution model and chain length set at 1,100,000 with a subsampling

170

193	correlated with the location from which the SAG was recovered (Figure 2). A previous
194	study from IODP Expedition 331 examined cloned SSU rRNA gene sequences for
195	bacterial taxonomic classification from Site C0017 and showed that Chloroflexi were one
196	of the main constituents of the microbial communities from 0.7 to 74.9 mbsf crossing
197	multiple sediment types, including oxygenated and anoxic layers as well as the gradients
198	among these layers showing this phylum to be ubiquitous (12).
199	Genome Composition
200	Overall 6.4 Mb of Chloroflexi genomic data has been analyzed. The assembled
201	sequence length was variable; from 0.15 Mb to 1.4 Mb representing 1.5% to 62.1% with
202	an average of 20.2% completeness based on core Gene Ontology (GO) annotations
203	(Table 1). tRNA recovery estimates reveal a slightly higher percent of recovery (4.0 -
204	66%, with an average of 28.3%) overall with an estimated average genome size of
205	3.15 Mb (Table S5). While some of these recovered SAGs were small, all the annotated
206	genes could be conclusively linked to a phylogenetic group based on the classifications
207	originating from the single cell sorts.
208	The seven Anaerolineales and the Thermoflexales SAGs had similar GC content
209	at approximately 55%. The remaining SAG belongs to the order Dehalococcoidales that
210	had a GC content of 47%. Comparison of the SSU rRNA gene sequences across the nine
211	Chloroflexi showed that two SAGs, An-B22 and An-J10, had nearly identical sequences.
212	Whole genome comparisons between An-B22 and An-J10 showed an ANI of 98% (42).
213	Both of these SAGs were collected from Site C0015 and belong to the order
214	Anaerolineales. In addition, Th-L07 had an ANI of 98% to An-B22 (Figure S1). By SSU

Applied and Environmental Microbiology

216	identity to An-B22.
217	Besides An-B22 having high identity to An-J10 and Th-L07, no other comparison
218	of SAGs yielded a greater than 91% ANI. SAG Th-L07 is only 10% complete and is
219	roughly one-third the size of An-B22. The pairwise ANI values only take into account the
220	genes present in the smaller of the genomes compared and though a conservative
221	estimate, this can be misleading across variable sized genomes. It has been suggested that
222	only genomes that are at least 20% complete will provide accurate species ANI values
223	(46); however, ANIs have been shown to differentiate among operational taxonomic units
224	(OTUs) when considering SAGs with a predicted completeness of $<20\%$ (47). Regardless
225	of completeness, fuzzy boundaries have been suggested and should be considered when
226	using ANI interpretations (48).
227	Carbon Metabolism
228	Predicted central carbon metabolic pathways are illustrated (Figure 3), as a
229	composite of the seven Anaerolineales SAGs. In contrast to the photosynthetic
230	Chloroflexi, such as Chloroflexi aurantiacus, no genes for the 3-hydroxypropionate cycle
231	were identified (6). At least one gene for glycolysis/gluconeogenesis pathway,
232	tricarboxylic acid (TCA) cycle, or the Wood-Ljungdahl pathway is represented in eight
233	of the SAGs (Tables S2-S4). The single exception is De-I04, which is lacking any genes
234	for glycolysis, the TCA cycle and the Wood-Ljungdahl pathway; however, this genome is
235	very incomplete with only a predicted 4.5% recovery. Therefore, it is likely that while a
236	number of genes encoding enzymes catalyzing other central metabolic reactions were
237	recovered, genes for central carbon metabolism were not sequenced rather than were

rRNA gene classification, strain Th-L07 is classified as a Thermoflexales and has an 85%

Accepted Manuscript Posted Online

AEM

absent from this genome. Comparisons with other strains suggest these complete
pathways may be present, however they were not sequenced from our nine *Chloroflexi*SAGs.

241 Metabolic products of glycolysis/gluconeogenesis can either be converted into 242 cellular components or fermented into metabolic waste products. Ethanol is one such 243 waste product and an alcohol dehydrogenase was identified in six of the SAGs (An-E09, 244 An-B04, An-L07, An-J10, An-B16, and An-B22). This enzyme acts on primary or 245 secondary alcohols to produce a corresponding aldehyde and NADH. Chloroflexi across 246 multiple classes contain annotated alcohol dehydrogenases, including the deep-sea strain 247 DscP2 (16). If alcohols are present within the surrounding environment, they could 248 passively diffuse across the membrane and could be used in central carbon metabolic 249 processes. 250 In addition to using passive transport, a number of organic carbon transporters 251 were also found. Amino acid, dipeptide and oligopeptide ABC transporters were 252 identified in the Thermoflexales SAG (Th-L07) and six of the Anaerolineales SAGs (An-253 L07, An-K11, An-B04, An-J10, An-B16, and An-B22). Xylose, maltose and multiple 254 sugar transporters were found in De-I04, An-L07, An-B16, and An-J10. Nucleoside and 255 deoxyribose-specific transporters were identified in An-K11, An-J10, An-B16, and An-256 B22. Strains An-L07 and An-K11 encode a glycerol-3-phosphate ABC transporter 257 suggesting exogenous glycerol-3-phosphate (G3P) can be utilized in lipid synthesis or 258 glycolysis. ABC transporters are not unique to these Chloroflexi SAGs as A. thermophila 259 UNI-1 encodes for xylose, amino acid, ribose, and carbohydrate ABC transporters. 260 Uptake of these fixed carbon molecules could supply precursors for other anabolic

<u> </u>
On
Posted
anuscript
Σ
scepted
Ă

Φ

262 UNI-1 grows by fermentation of sugars at neutral pH (37). These Chloroflexi could be 263 utilizing the dissolved amino acids, which have been identified elsewhere in an oceanic 264 crustal aquifer (49). 265 Besides using exogenous carbon sources, these SAGs encode a number of 266 enzymes in the Wood-Ljungdahl pathway of CO₂ fixation (also known as the reductive 267 acetyl-CoA pathway). A formyltetrahydrofolate synthase, methylenetetrahydrofolate 268 cyclohydrolase, 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-269 methylenetetrahydrofolate reductase, carbon monoxide dehydrogenase/acetyl-CoA 270 synthase (CODH/ACS), carbon-monoxide dehydrogenase catalytic subunit, and formate 271 dehydrogenase were found in all seven of the Anaerolineales SAGs. A recent 272 metagenomic reconstruction of a putative aerobic Anaerolinea from aquifer sediments 273 adjacent to the Colorado River lacked genes of the Wood-Ljungdahl pathway, pyruvate 274 ferredoxin oxidoreductase and hydrogenases, which is in contrast to our seven 275 Anaerolineales SAGs (50). Our Dehalococcoidales and Thermoflexales SAGs (De-I04 276 and Th-L07, respectively) are also lacking these genes. Though in our case, it is likely 277 these genes are missing in the assembly rather than absent from the genome since the 278 closest sequenced isolates to these SAGs, Dehalogenimonas lykanthroporepellens and 279 Thermoflexus hugenholtzii JAD2, encode enzymes for the Wood-Ljungdahl pathway

pathways or energy in catabolic pathways, depending on cellular demand. A. thermophila

- 280 (51). Furthermore, an incomplete Wood-Ljungdahl pathway does not prevent these
- enzymes from being used in other anabolic processes (52). At least one subunit for the
- 282 pyruvate ferredoxin oxidoreductase was found in four of the SAGs (An-K11, An-B04,

Applied and Environmental Microbiology 284 pathway and other anabolic pathways (53). 285 In three of the Anaerolineales SAGS, An-B16, An-B22 and An-K11, the formate 286 dehydrogenases were annotated to contain selenocysteine in the active site rather than 287 cysteine. Selenocysteine-specific translation factors were identified in An-B04 and 288 An-B22, but not in An-B16. Interestingly, the encoded formate dehydrogenase of An-J10 289 is not predicted to contain a selenocysteine, although a selenocysteine-specific translation 290 factor was identified. Like An-J10, the formate dehydrogenases of A. thermophila UNI-1 291 does not encode a selenocysteine in its active site. Many anaerobic dehydrogenases are 292 annotated to contain selenocysteine in the order *Dehalococcoidales*; however, there was 293 no evidence of enzymes requiring selenocysteine in the Dehalococcoidales SAG, i.e., 294 De-I04. A. thermophila UNI-1 does not have any dehydrogenases annotated to contain 295 selenocysteine, but it does encode a selenocysteine elongation factor. Selenocysteine-296 containing formate dehydrogenases are found in many obligate anaerobes and facultative 297 aerobes, suggesting an importance under low oxygen conditions, such as the deep 298 subsurface biosphere (54). At Site C0017, the nitrate concentration at the depth of our 299 sample was less than 2 µM suggesting an anaerobic environment where oxygen was 300 presumably consumed by microbial respiration within the uppermost layer (12). Genes 301 suggesting selenocysteine usage were found at both Sites C0015 and C0017. 302 Reductases and Hydrogenases 303 Genes encoding subunits resembling those of the CoB-CoM heterodisulfide 304 reductase (hdrABCD) were identified in five of the Anaerolineales SAGs (An-K11, 305 An-B04, An-J10, An-B16, and An-B22) and were organized in operons. While this

An-B16 and An-J10). This protein can provide a link between the Wood-Ljungdahl

307	enzymes have been identified in methanogenic archaea and a number of strictly anaerobic
308	bacteria including sequenced isolates D. lykanthroporopellens BL-DC-9 and
309	T. hugenholtzii JAD2 (51, 55). Most likely due to low genome coverage, these genes
310	were not identified in the Thermoflexales and Dehalococcoidales SAGs (Th-L07 and
311	De-I04, respectively). The presence of hrdABCD in our SAGs supports the hypothesis
312	that these enzymes are responsible for transfer of reducing equivalents to and from
313	ferredoxins or NADH (17). Conservation across these multiple Chloroflexi lineages
314	suggests that these redox active enzymes play an integral role in cellular function.
315	Across all nine of our Chloroflexi SAGs, a number of hydrogenase and
316	hydrogenase accessory proteins were identified. The genes from the hydrogenase
317	maturation apparatus hypABCDEF (56) were identified in An-B16, An-L07, and De-I04.
318	These genes are required for the coordination of the NiFe cofactor and assembly of
319	mature hydrogenase. However, energy conserving hydrogenase (ech), cytoplasmic
320	hymABC hydrogenase and the uptake hydrogenase (hup) were not specifically identified
321	in any of these nine Chloroflexi SAGs.
322	Synthesis and uptake of cofactors
323	Hydrogenases and other redox active enzymes require specific cofactors.
324	Respiratory nitrate reductases, dimethyl sulfoxide reductases and some carbon monoxide
325	dehydrogenases are all molybdopterin oxidoreductases and therefore require the
326	molybdenum cofactor for activity. The molybdenum cofactor biosynthesis complex
327	moaABCDE was represented by one or more genes in six Anaerolineales SAGs (An-E09,
328	An-B04, An-L07, An-J10, An-B16 and An-B22). At least one gene encoding enzymes

enzyme has not been identified in A. thermophila UNI-1, genes for the hdrABCD

AEM

329	for molybdopterin cofactor biosynthesis (moeAB and mobAB) were identified in five of
330	the nine SAGs (De-I04, An-K11, An-B04, An-J10 and An-B16). In addition,
331	molybdenum is required for the xanthine dehydrogenase, an enzyme in purine
332	metabolism, which was also identified in An-B04, An-L07, An-J10 and An-B16.
333	Molybdopterin cofactors can either coordinate the localization of molybdenum or
334	tungsten (57). In An-B22, a tungstate ABC-transporter was identified, suggesting this
335	organism uses tungsten rather than molybdenum. Both An-J10 and An-B22 contain a
336	vitamin B ₁₂ ABC transporter.
337	Environmental Adaptations
338	In the Dehalococcoidia SAG DEH-J10 genes for environmental adaptions, such
339	as osmoprotectants (trehalose and alpha-mannoslyglycerate synthases) and oxygen
340	protection, were identified (17). A trehalose synthase gene was identified in An-B22,
341	An-L07 and An-B16. Genes for superoxide dismutase and catalase were identified in An-
342	B22 and only the gene for catalase was identified in Th-L07. These gene products could
343	be used to cope with an oxygen influx introduced during ambient seawater mixing with
344	interstitial hydrothermal fluids, as is likely in the more porous sediment layers.
345	Cell wall formation
346	Terrestrial strains of Chloroflexi lack genes for peptidoglycan synthesis, and
347	D. mccartyi strains contain a proteinaceous surface layer, i.e., S-layer (18). The enzyme
348	peptidoglycan glycosyltransferase is responsible for joining N-acetylglucosamine to N-
349	acetylmuramic acid and is essential for peptidoglycan biosynthesis. This gene was
350	identified in SAGs An-B22, An-B04, and An-K11. It is possible that the annotated
351	peptidoglycan glycosyltransferase genes are actually responsible for glycosylation of the

Applied and Environmental Microbiology 353 cell-wall genotype and phenotype is preserved across the *Chloroflexi* phylum (58).
354 *Reductive Dehalogenase*355 A reductive dehalogenase gene (*rdhA*) gene has been directly linked to a
356 subsurface *Chloroflexi* outside of the class *Dehalococcoidia*. Unlike other SAGs within

S-layer proteins as suggested for DEH-J10 (17). It has also been suggested that this single

357 the *Chloroflexi*, An-B22 (the largest genome recovered, Table 1) has an annotated

trichloroethene reductive dehalogenase gene (*tceA*); however, this annotation must be

359 interpreted cautiously as RdhA proteins are as yet far from being well characterized. This

360 gene is most closely related to a reductive dehalogenase of the archaeon *Ferroglobus*

361 placidus DSM 10642 (Figure 4). Very few reductive dehalogenases have a known

362 function and this *rdhA* is more similar to genes found among known dehalogenators of

363 the Clostridia, Delta- and Alpha- classes of the Proteobacteria than the Dehalococcoidia

364 (59). Like other reductive dehalogenase proteins, this *rdhA* gene (from An-B22) encodes

365 binding motifs for a FeS cluster (Figure S2). In addition, An-B22 encodes for a vitamin

366 B_{12} ABC transporter and the associated corrinoid is a known cofactor of reductive

dehalogenases (60).

The reductive dehalogenases of *Dehalococcoides* are encoded in an operon of *rdhAB* genes. The RdhA is the functional dehalogenase and the RdhB is thought to be its associated membrane-bound anchor protein (60). Transcriptional regulators are often encoded adjacent to the *rdhAB* operon and the operon is often on genomic islands that are horizontally acquired and integrated at the single-copy tmRNA gene, *ssrA* (61). None of these conserved characteristics regarding the reductive dehalogenases of *D. mccartyi* were found in An-B22 or *F. placidus* (62). Furthermore, *F. placidus* has not been shown to conserve energy via reductive dehalogenation (63). Reductive dehalogenases are
exported through the membrane fully folded via the TatABC export apparatus (60). A *tatA* gene was identified in An-B22; however, no twin arginine signal was identified in
this *rdhA* or in that of *F. placidus* (62).

379 Widespread and diverse *rdhA* genes have been detected across the Pacific Ocean 380 in subsurface sediment cores and microcosms have shown dehalogenation activity (20, 381 21). Identification of an *rdhA* in An-B22 provides phylogenetic linkage to an organism 382 within the phylum Chloroflexi, but outside the order Dehalococcoidales. Whether or not 383 this Rdh is involved with organohalide respiration or more simply dehalogenation of 384 organic compounds enhancing heterotrophic growth or perhaps a mixotrophic 385 combination depending upon ephemeral conditions (e.g., oxygen levels), these results, 386 along with previous research (20, 21), supports the hypothesis that reductive 387 dehalogenation is an important biogeochemical processes within the oceanic deep 388 subsurface biosphere. 389 CONCLUSION 390 This study used single cell genomics to examine an active subsurface 391 hydrothermal system and to expand the known metabolic function of uncultured

392 organisms within the phylum Chloroflexi. Photosynthetic Chloroflexi (e.g., Chloroflexus

393 *aurantiacus*) can fix carbon through the 3-hydroxypropionate pathway (6), whereas other

394 Chloroflexi isolates (e.g., D. lykanthroporepellens and A. thermophila) use exogenous

395 sources of carbon (35, 51). Although the two sites from the Iheya North hydrothermal

396 field demonstrated hydrodynamic differences, this was not reflected in the SAGs we

397 analyzed. From this study it remains unclear if these subsurface strains are strictly

398	heterotrophic or autotrophic. Hydrothermal vents can circulate dissolved organic carbon
399	in addition to inorganic chemicals into the subsurface biosphere (49). Due to the number
400	of ABC transporters identified across all nine SAGs, it is likely these organisms are
401	living heterotrophically. This hypothesis is further supported by A. thermophila, which
402	also grows heterotrophically by fermentation and contains a number of shared
403	transporters and carbon utilization genes.
404	These SAGs yield compelling insights to central carbon metabolism and the
405	potential for reductive dehalogenation in an enigmatic group of subsurface microbes. In
406	contrast to previous Chloroflexi SAGs, these genomes were recovered from
407	hydrothermally driven habitats and therefore provide an extended window into the
408	metabolic potential of the deep subsurface biosphere. Even though the SAGs examined
409	here range in genome completeness, collectively they have enabled insights into the
410	metabolic potential of subsurface Chloroflexi providing useful functional gene
411	information with special emphasis regarding the Anaerolineales.

412 FUNDING INFORMATION

413	This work has been funded in part by Western Washington University's Office of
414	Research and Sponsored Programs, by the National Science Foundation OCE 1260710
415	(to CLM), and the Center for Dark Energy Biosphere Investigations. This is C-DEBI
416	Contribution 322.
416	Contribution 322.

417

418 ACKNOWLEDGEMENTS

419 The authors wish to acknowledge and thank Yuki Morono from the Kochi

420 Institute for Core Sample Research (Japan Agency for Marine-Earth Science and

421 Technology, Japan) as well as Joyce McBeth and Erin Field from Bigelow Laboratory for

422 Ocean Sciences for their help and guidance with sample preparation for cell sorting. We

423 also thank Benjamin Tully for his technical expertise and advice in determining genome

424 completeness estimates. We are also grateful to both David Emerson (Bigelow

425 Laboratory) and Stephen H. Zinder (Cornell University) for their insightful comments.

426		REFERENCES
427	1	
428	1.	Kappe MS, Giovannoni SJ. 2003. The uncultured microbial majority. Annu Rev
429	2	MICRODIOI 57:369-394.
430	Ζ.	wang Y, Sneng HF, He Y, WU JY, Jiang YX, Tam NFY, Znou HW. 2012.
431		Comparison of the levels of bacterial diversity in freshwater, intertidal wetland,
432		and marine sediments by using millions of illumina tags. Appl Environ Microbiol
433	2	78:8204-82/1. Vemade T. Saligushi V. 2000. Cultivation of unculturad Chloroflavi submission
434	5.	Significance and economical out of formarky uncultured <i>Chloroflexi</i> subplivita.
433		significance and ecophysiology of formerry uncultured <i>Chiorofiexi</i> subphysion 24,205,216
430	4	Tas N yan Falant MHA, da Vas WM, Smidt H, 2000, The little basterie that
437	4.	as n, van Eekent MIA, de vos will, Sindt A. 2009. The nuie baciena inat
430		call - diversity, genomics and ecophysiology of <i>Denalococcolles</i> spp. in
439	5	Kramonziek MI, Chemy PD, Hending II, Overinde OO, Levi AC, Munoni
440	5.	SCD Novek DI 2012 Notural nicho for organoholido reeniring Chloroflavi
441		Appl Environ Microbiol 78 , 303, 401
1/3	6	Bryant DA Liu 7 Li T 7bao F Costas AMC Klatt CC Word DM
443	0.	Friggard N-II Overmann I 2012 Comparative and functional genomics of
445		anovygenic green bacteria from the taxa Chlorobi Chlorofleri and
446		Acidobacteria p 47-102 In Burnan RI Vermaas W (eds) Functional genomics
447		and evolution of photosynthetic systems. Advances in photosynthesis and
448		respiration vol 33 Springer Netherlands
449	7	Sorokin DV. Lücker S. Veimelkova D. Kostrikina NA. Kleerehezem R.
450	7.	Rijnstra WIC, Damsté JSS, Le Paslier D, Muyzer G, Wagner M, van
451		Loosdrecht MCM. Daims H. 2012. Nitrification expanded: discovery.
452		physiology and genomics of a nitrite-oxidizing bacterium from the phylum
453		<i>Chloroflexi</i> , ISME J. 6 :2245-2256.
454	8.	Inagaki F. Nunoura T. Nakagawa S. Teske A. Lever M. Lauer A. Suzuki M.
455		Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D'Hondt S,
456		Jørgensen BB. 2006. Biogeographical distribution and diversity of microbes in
457		methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin.
458		Proc Natl Acad Sci USA 103:2815-2820.
459	9.	Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. 2008.
460		Metagenomic signatures of the Peru Margin subseafloor biosphere show a
461		genetically distinct environment. Proc Natl Acad Sci USA 105:10583-10588.
462	10	Blazejak A, Schippers A. 2010. High abundance of JS-1- and Chloroflexi-related
463		Bacteria in deeply buried marine sediments revealed by quantitative, real-time
464		PCR. FEMS Microbiol Ecol 72:198-207.
465	11.	Biddle JF, Sylvan JB, Brazelton WJ, Tully BJ, Edwards KJ, Moyer CL,
466		Heidelberg JF, Nelson WC. 2011. Prospects for the study of evolution in the
467		deep biosphere. Front Microbiol 2:285.
468	12.	Yanagawa K, Breuker A, Schippers A, Nishizawa M, Ijiri A, Hirai M,
469		Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K. 2014. Microbial
470		community stratification controlled by the subseafloor fluid flow and geothermal
471		gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough

AEM

470		
472		(Integrated Ocean Drilling Program Expedition 331). Appl Environ Microbiol
4/3	12	80:0120-0135.
4/4	13.	Of Cutt BN, Bach W, Becker K, Fisher AI, Hentscher M, Toher BM, Wheat
4/5		Lowards KJ. 2010. Colonization of subsurface microbial observatories
4/0	14	deployed in young ocean crust. ISME J 5:092-705.
4//	14.	KINKE C, SCHWIEHTEK P, SCZYFDA A, IVANOVA NN, ANDERSON IJ, CHENG J-F,
4/8		Darling A, Maliatti S, Swan BK, Gles EA, Dodsworth JA, Hedlund BP,
4/9		I stamts G, Slevert SM, Liu W-1, Elsen JA, Hallam SJ, Kyrpides NC,
480		Stepanauskas K, Rubin EM, Hugennouz P, Woyke 1. 2015. Insights into the
481	15	phylogeny and coding potential of microbial dark matter. Nature 499:451-457.
482	15.	Stepanauskas K. 2012. Single cell genomics: an individual look at microbes.
485	16	Curr Opin Microbiol 15:015-020.
484	10.	Kaster A-K, Mayer-Blackwell K, Pasarelli B, Spormann AM. 2014. Single
485		cell genomic study of <i>Denalococcolaetes</i> species from deep-sea sediments of the
480	17	Peruvian Margin. ISME J 8:1831-1842.
48/	17.	Wasmund K, Schreider L, Lloyd KG, Petersen DG, Schrämm A,
488		Stepanauskas R, Jørgensen BB, Adrian L. 2014. Genome sequencing of a
489		single cell of the widely distributed marine subsurface <i>Denalococcolata</i> , phylum
490	10	Chloroflexi. ISME J 8:383-397.
491	18.	Loiner FE, Yan J, Kitalanti KM, Adrian L, Edwards EA, Konstantinidis KI, Mäller IA, Fallerten H, Zinder SH, Snermenn AM, 2012, Dahalassesider
492		Muller JA, Fullerton H, Zinder SH, Spormann AM. 2015. Dehalococcoldes
495		mccurry gen. nov., sp. nov., obligately organonande-respiring anaerooic bacteria
494		Debalaccessidia classic new order Debalaccessidales and new and family
495		Dehalococcollar classis nov., older Dehalococcollares old. nov. and family
490		Migrapial 62:625 625
497	10	Microbiol 05:023-055. Hug I A Edwards E A 2012 Diversity of reductive dehalogeness games from
490	19.	nug LA, Euwarus EA. 2015. Diversity of reductive denalogenase genes from
499 500		DCP sarrous Front Microbiol 4:241
500	20	FUR SCIECHS, FIOHL MICLOUOLI 4:541. Futagami T. Marana V. Tarada T. Kaksanan AH. Inagaki F. 2000
502	20.	Debalagenation activities and distribution of reductive debalagenase homologous
502		genes in marine subsurface sediments. Appl Environ Microbiol 75 :6005-6000
503	21	Kawai M. Eutagami T. Tayada A. Takaki V. Nichi S. Hari S. Araj W.
504	21.	Tsubouchi T. Morono V. Habiyoma I. Ito T. Fujiyoma A. Inagaki F. Takami
505		H 2014 High frequency of phylogenetically diverse reductive dehalogenase.
507		homologous genes in deen subsection sedimentary metagenomes. Front
508		Microbiol 5.80
508	22	Holdon IF Braiar IA Rogars KI Schulta MD Tonar BM 2012
510	22.	Riogeochemical processes at hydrothermal years: Microhes and minerals
510		bioenergetics and carbon fluxes. Oceanography 25 :196-208
512	23	Nakagawa S. Takaj K. 2008. Deen-sea vent chemoautotrophs: diversity
512	49.	biochemistry and ecological significance. FFMS Microbiol Fcol 65.1-14
514	24	Takai K Mottl MJ Nielsen SHH Expedition 331 Scientists 2012 IODD
515	∠4.	Expedition 331. Strong and expansive subseafloor hydrothermal activities in the
516		Okinawa Trough Scientific Drilling 13.19-77
510		Okinawa 110ugii. Deleninte Dining 10,17-27.

517	25.	Takai K, Mottl MJ, Nielsen SHH, Expedition 331 Scientists. 2011. Proceeding
518		of the IODP, 331: Washington DC. Integrated Ocean Drilling Program
519		Management International, Inc, La Jolla, CA.
520	26.	Yanagawa K, Nunoura T, McAllister SM, Hirai M, Breuker A, Brandt L,
521		House CH, Moyer CL, Birrien J-L, Aoike K, Sunamura M, Urabe T, Mottl
522		MJ, and Takai K. 2013. The first microbiological contamination assessment by
523		deep-sea drilling and coring by the D/V <i>Chikyu</i> at the Iheya North hydrothermal
524		field in the Mid-Okinawa Trough (IODP Expedition 331). Front Microbiol 4:327.
525	27.	Kester DR, Duedall IW, Connors DN, Pytkowicz RM. 1967. Preparation of
526		artificial seawater. Limnol Oceanogr 12:176-179.
527	28.	Stepanauskas R, Sieracki ME. 2007. Matching phylogeny and metabolism in
528		the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci USA
529		104: 9052-9057.
530	29.	Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-
531		Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The
532		Ribosomal Database Project: improved alignments and new tools for rRNA
533		analysis. Nucleic Acids Res 37:D141-D145.
534	30.	Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
535		Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV,
536		Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: A new
537		genome assembly algorithm and its applications to single-cell sequencing. J
538		Comput Biol 19: 455-477.
539	31.	Wilkins MJ, Kennedy DW, Castelle CJ, Field EK, Stepanauskas R,
540		Fredrickson JK, Konopka AE. 2014. Single-cell genomics reveals metabolic
541		strategies for microbial growth and survival in an oligotrophic aquifer. Microbiol
542		160:3 62-372.
543	32.	Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González
544		JM, Luo H, Wright JJ, Landry ZC, Hanson NW, Thompson BP, Poulton NJ,
545		Schwientek P, Acinas SG, Giovannoni SJ, Moran MA, Hallam SJ,
546		Cavicchioli R, Woyke T, Stepanauskas R. 2013. Prevalent genome streamlining
547		and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl
548		Acad Sci USA 110 :11463-11468.
549	33.	Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H, Saw JH, Senin
550		P, Yang C, Chatterji S, Cheng J-F, Eisen JA, Sieracki ME, Stepanauskas, R.
551		2009. Assembling the marine metagenome, one cell at a time. PLoS One 4:e5299.
552	34.	Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,
553		Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL,
554		Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD,
555		Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The
556		RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics
557		9: 75.
558	35.	Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. 2003.
559		Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov.,
560		sp. nov., novel filamentous thermophiles that represent a previously uncultured
561		lineage of the domain <i>Bacteria</i> at the subphylum level. Int J Syst Evol Microbiol
562		53: 1843-1851.

563	36.	Dodsworth JA, Gevorkian J, Despujos F, Cole JK, Murugapiran SK, Ming
564		H, Li W-J, Zhang G, Dohnalkova A, Hedlund BP. 2014. Thermoflexus
565		hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous
566		bacterium representing a novel class in the <i>Chloroflexi</i> , <i>Thermoflexia</i> classis nov.,
567		and description of <i>Thermoflexaceae</i> fam nov and <i>Thermoflexales</i> ord nov Int J
568		Syst Evol Microbiol 64·2119-2127
560	37	Vamada T Sakiguchi V Hanada S Imachi H Ohashi A Harada H
570	57.	Komagata V 2006 Angaralinga thermolimosa sp. pov. Lovilinga saecharalytica
571		Kainagata 1. 2000. Antierotinea thermotimosa sp. nov., Levinnea succharotytica
571		Some stars and the second description of the new places A line shows in the second stars and
572		niamentous anaerobes, and description of the new classes Anderolinede classis
573		nov. and <i>Caldilineae</i> classis nov. in the bacterial phylum <i>Chloroflexi</i> . Int J Syst
574		Evol Microbiol 56: 1331-1340.
575	38.	Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner
576		FO. 2007. SILVA: a comprehensive online resource for quality checked and
577		aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res
578		35: 7188-7196.
579	39.	Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R,
580		McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast,
581		scalable generation of high-quality protein multiple sequence alignments using
582		Clustal Omega. Mol Syst Biol 7:539.
583	40.	Kearse M. Moir R. Wilson A. Stones-Havas S. Cheung M. Sturrock S.
584		Buxton S. Cooper A. Markowitz S. Duran C. Thierer T. Ashton B. Meinties
585		P. Drummond A. 2012 Geneious Basic: An integrated and extendable deskton
586		software platform for the organization and analysis of sequence data
587		Bioinformatics 28 ·1647-1649
588	41	Huelsenbeck IP Ronquist F 2001 MRBAVES Bayesian inference of
580	71.	nuclsenbeek 51, Konquise F. 2001. WREATES. Dayesian inference of
500	12	Konstantinidia KT. Tiodia IM 2005. Conomia insights that advance the species
590	42.	Advision for malesmenter. Date Netl Acad Sci USA 102-25(7,257)
591	12	definition for prokaryotes. Proc Nati Acad Sci USA 102:250/-25/2.
592	43.	Alischul SF, Madden TL, Schaller AA, Zhang J, Zhang Z, Miller W, Lipman
593		DJ. 1997. Gapped BLAST and PST-BLAST: a new generation of protein database
594		search programs. Nucleic Acids Res 25:3389-3402.
595	44.	Mitreva M. 2008. Bacterial core gene set. NIH Human Microbiome Project.
596		[http://www.hmpdacc.org/doc/sops/reference_genomes/metrics/Bacterial_CoreGe
597		nes_SOP.pdf]
598	45.	Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis
599		AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
600		Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,
601		Sherlock G. 2000. Gene Ontology: tool for the unification of biology. Nat Genet
602		25: 25-29.
603	46.	Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the
604		prokaryotic species definition. Proc Natl Acad Sci USA 106:19126-19131.
605	47.	Field EK, Sczyrba A, Lyman AE, Harris CC. Wovke T. Stepanauskas R.
606		Emerson D. 2015. Genomic insights into the uncultivated marine
607		Zetaproteobacteria at Loihi Seamount ISME I 9.857-870
001		Letter of the and Lonin Soundarie. ISINE 57.007 070.

608	48.	Rosselló-Móra R, Amann R. 2015. Past and future species definitions for
609		Bacteria and Archaea. Syst Appl Microbiol 38:209-216.
610	49.	Lin H-T, Amend JP, LaRowe DE, Bingham J-P, Cowen JP. 2015. Dissolved
611		amino acids in oceanic basaltic basement fluids. Geochim Cosmochim Acta
612		164: 175-190.
613	50.	Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR,
614		Williams KH, Tringe SG, Banfield JF. 2013. Community genomic analyses
615		constrain the distribution of metabolic traits across the Chloroflexi phylum and
616		indicate roles in sediment carbon cycling. Microbiome 1:22.
617	51.	Siddaramappa S, Challacombe JF, Delano SF, Green LD, Daligault H, Bruce
618		D, Detter C, Tapia R, Han S, Goodwin L, Han J, Woyke T, Pitluck S,
619		Pennacchio L, Nolan M, Land M, Chang Y-J, Kyrpides NC, Ovchinnikova
620		G, Hauser L, Lapidus A, Yan J, Bowman KS, da Costa MS, Rainey FA, Moe
621		WM. 2012. Complete genome sequence of <i>Dehalogenimonas</i>
622		<i>lykanthroporepellens</i> type strain ($BL-DC-9^{T}$) and comparison to
623		"Dehalococcoides" strains. Stand Genomic Sci 6:251-264.
624	52.	Zhuang W-Q, Yi S, Bill M, Brisson VL, Feng X, Men Y, Conrad ME, Tang
625		YJ, Alvarez-Cohen L. 2014. Incomplete Wood-Ljungdahl pathway facilitates
626		one-carbon metabolism in organohalide-respiring <i>Dehalococcoides mccartyi</i> .
627		Proc Natl Acad Sci USA 111:6419-6424.
628	53.	Furdui C, Ragsdale SW. 2000. The role of pyruvate ferredoxin oxidoreductase
629		in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway.
630		J Biol Chem 275: 28494-28499.
631	54.	Romero H, Zhang Y, Gladyshev VN, Salinas G. 2005. Evolution of selenium
632		utilization traits. Genome Biol 6:R66.
633	55.	Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R. 2008.
634		Methanogenic archaea: ecologically relevant differences in energy conservation.
635		Nat Rev Microbiol 6:579-591.
636	56.	Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. 2011. Genome
637		data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore
638		the diversity and ecological importance of presumptive high-affinity H ₂ -oxidizing
639		Bacteria. Appl Environ Microbiol 77:6027-6035.
640	57.	Kisker C, Schindelin H, Baas D, Rétey J, Meckenstock RU, Kroneck PMH.
641		1999. A structural comparison of molybdenum cofactor-containing enzymes.
642		FEMS Microbiol Rev 22:503-521.
643	58.	Sutcliffe IC. 2011. Cell envelope architecture in the Chloroflexi: a shifting
644		frontline in a phylogenetic turf war. Environ Microbiol 13:279-282.
645	59.	Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L.
646		2013. Overview of organohalide-respiring bacteria and a proposal for a
647		classification system for reductive dehalogenases. Philos Trans R Soc Lond B
648		Biol Sci 368: 20120322.
649	60.	Smidt H, de Vos WM. 2004. Anaerobic microbial dehalogenation. Annu Rev
650		Microbiol 58: 43-73.
651	61.	McMurdie PJ, Hug LA, Edwards EA, Holmes S, Spormann AM. 2011. Site-
652		specific mobilization of vinyl chloride respiration islands by a mechanism
653		common in Dehalococcoides. BMC Genomics 12:287.

654	62.	Anderson I, Risso C, Holmes D, Lucas S, Copeland A, Lapidus A, Cheng J-F,
655		Bruce D, Goodwin L, Pitluck S, Saunders E, Brettin T, Detter JC, Han C,
656		Tapia R, Larimer F, Land M, Hauser L, Woyke T, Lovley D, Kyrpides N,
657		Ivanova N. 2011. Complete genome sequence of Ferroglobus placidus
658		AEDII12DO. Stand Genomic Sci 5:50-60.
659	63.	Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S,
660		Huber H, Stetter KO. 1996. Ferroglobus placidus gen. nov., sp. nov., a novel
661		hyperthermophilic archaeum that oxidizes Fe ²⁺ at neutral pH under anoxic
662		conditions. Arch Microbiol 166:308-314.

Table 1. Assembly Statistics and phylogenetic classification as determined by SSU rRNA gene sequences from *Chloroflexi* SAGs.

				Estimated genome	Max		GC	No.		
		Collection	Assembled	recovery	Contig	Contig	content	predicted	No. of	No. of
SAG Name	Order	Site	Length	(%)	Length	Count	(%)	genes	RNAs	tRNAs
An-E09	Anaerolineales	C0015	153,247	1.5%	50,084	11	55.6	175	2	2
De-I04	Dehalococcoidales	C0017	187,486	4.5%	30,599	21	47.8	211	5	5
Th-L07	Thermoflexales	C0017	462,464	10.6%	46,198	46	57.63	447	10	7
An-K11	Anaerolineales	C0017	493,899	18.2%	46,925	50	56.5	455	18	18
An-B04	Anaerolineales	C0017	615,816	16.7%	66,121	63	56.6	588	5	4
An-L07	Anaerolineales	C0015	800,722	16.7%	125,785	72	58.4	818	11	11
An-J10	Anaerolineales	C0015	1,010,824	19.7%	84,943	62	56.9	967	21	20
An-B16	Anaerolineales	C0017	1,258,475	31.8%	101,499	82	56.9	1214	35	33
An-B22	Anaerolineales	C0015	1,423,460	62.1%	67,055	134	56.8	1411	33	26

28

663 FIGURE LEGENDS

664

Figure 1. Detailed bathymetry of the Iheya North hydrothermal field and the central
valley at Iheya North Knoll, with the location of Sites C0013 through C0017 drilled
during IODP Expedition 331. HRV = High Radioactive Vent mound, CBC = Central Big
Chimney, SBC = South Big Chimney mound, NEC = North Edge Chimney mound, E18
Event Marker 18 mound, NBC = North Big Chimney mound, ESBC = "Ese" South Big
Chimney mound (24, 25).

Figure 2. An unrooted Bayesian tree of *Chloroflexi* SSU rRNA gene sequences from the
 Okinawa Trough. Samples are color coded for collection Site, from C0015 and C0017 in
 red and blue, respectively. Numbers at nodes represent % consensus support. Scale bar
 represents one nucleotide substitution per ten positions.

676

677 **Figure 3.** Schematic representing the composite metabolic and transport proteins

hypothesized from genome analysis of seven *Anaerolineales* SAGs. The genes marked
with an (*) were identified in only one of the *Anaerolineales* SAGs.

680

681 Figure 4. An unrooted Bayesian tree of reductive dehalogenase homologous (RdhA)

sequences, including the one identified in *Anaerolineales* SAG An-B22. Numbers at

nodes represent % consensus support. Scale bar represents one amino acid substitution

684 per ten positions.

Accepted Manuscript Posted Online

ABC Transporters

Applied and Environmental Microbiology

Desulfitobacterium sp. CR1 (BAF57046.1)

AEM

Supplementary Information for

Comparative single-cell genomics of *Chloroflexi* from the Okinawa Trough

deep subsurface biosphere

H. Fullerton and C. L. Moyer*

*To whom correspondence should be addressed: <u>cmoyer@hydro.biol.wwu.edu</u>

This file contains:

Supplementary Tables S1 - S5

Supplementary Figures S1 - S2

Table S1. Phylogeny and metabolism of select organisms in the phylum Chloroflexi .

Organism	Order	Metabolic Classification	Accession Number
Anaerolinea thermophila	Anaerolineales	Anaerobic Heterotroph	NC_014960
Caldilinea aerophila	Caldilineales	Facultative Heterotroph	NC_017079
Chloroflexus aurantiacus	Chloroflexales	Anoxygenic Photoautotroph	NC_010175
Dehalogenimonas lykanthroporepellens	Dehalococcoidales	Anaerobic Dehalorespirer	GCA_000143165
Nitrolancetus hollandicus	Sphaerobacterales	Chemoautotrophic Nitrite Oxidizer	CAGS01000001
Thermomicrobium roseum	Thermomicrobiales	Aerobic Chemoheterotroph	CP001275 (chromosome)
			CP001276 (Megaplasmid)

Table S2. One Carbon Pool Genes

		Dehalococcoidales	Thermoflexales	Anaerolineales							
Carbon Utilization											
Pathway	Enzyme	EC number	AB-790-I04	AB-790-L07	AB-790-K11	AC-715-B04	AB-790-B16	AC-711-E09	AC-711-L07	AC-711-J10	AC-711-B22
One Carbon pool											
by Folate	Dihydrofolate reductase	1.5.1.3						0115			
One Carbon pool											
by Folate	Formyltetrahydrofolate dehydrogenase	1.5.1.6									
One Carbon pool											
by Folate	Thymidylate synthase	2.1.1.45						0116			
One Carbon pool	Phosphoribosylglycinamide										
by Folate	formyltransferase	2.1.2.3/2.1.2.2	0159c						0803		
One Carbon pool	5-methyltetrahydrofolatehomocysteine						0599, 0651c,				
by Folate	methyltransferase	2.1.1.13					0657c, 0998c		0365	0400	0307
One Carbon pool	Formimidoyltetrahydrofolate										
by Folate	cyclodeaminase	4.3.1.4			0064c					0682	
One Carbon pool											
by Folate	methionyl-tRNA formyltransferase	2.1.2.9	0081c			0409c				0261	
	carbon-monoxide dehydrogenase								Large		
Wood-Ljungdahl	catalytic subunit	1.2.99.2/1.2.7.4			CooS=0059c				Chain=0723		
	5,10-Methylenetetrahydrofolate										
Wood-Ljungdahl	reductase (NAD(P))	1.5.1.20				0343, 0347	0309				0375c
	CO dehydrogenase/acetyl-CoA synthase,										
Wood-Ljungdahl	acetyl-CoA synthase subunit	2.3.1.169			0055c						
	Formate dehydrogenase, alpha and delta										
Wood-Ljungdahl	subunit	1.2.1.2			0279		0768c			0063	0854
Wood-Ljungdahl	Formyltetrahydrofolate synthetase	6.3.4.3			0062c						
	5,10-methylenetetrahydrofolate										
Wood-Ljungdahl	dehydrogenase	1.5.1.5			0063c	0351				0311	0370c
Wood-Ljungdahl	cyclohydrolase	3.5.4.9			0063c	0351				0311	0370c

Table S3. Glycolysis Genes

			Dehalococcoidales	Thermoflexales	Anaerolineales						
Carbon Utilizati	on										
Pathway	Enzyme	EC number	AB-790-I04	AB-790-L07	AB-790-K11	AC-715-B04	AB-790-B16	AC-711-E09	AC-711-L07	AC-711-J10	AC-711-B22
Glycolysis	Phosphoglucomutase	5.4.2.2				0194	0718c				0165c
Glycolysis	glucokinase	2.7.1.2			0102				0287c		
	isomerase/mannose-6-phosphate										
Glycolysis	isomerase, archaeal	5.3.1.9/5.3.1.8		0333						0652c	1150c
Glycolysis	6-phosphofructokinase	2.7.1.11			0068c		0943c				
Glycolysis	fructose-bisphosphatase	3.1.3.11					0505				
Glycolysis	fructose-bisphosphate aldolase	4.1.2.13					0817c				
Glycolysis	Triosephosphate isomerase	5.3.1.1					0095c				
	glyceraldehyde-3-phosphate										
Glycolysis	dehydrogenase	1.2.1.12					0944c				
	glyceraldehyde-3-phosphate										
Glycolysis	dehydrogenase	1.2.1.59									1092
Glycolysis	Phosphoglycerate kinase	2.7.2.3							0775c		
	2,3-bisphosphoglycerate-independent										
Glycolysis	phosphoglycerate mutase, archaeal type	5.4.2.1			0018c		0606c		0541	0831c	1279
Glycolysis	Enolase	4.2.1.11				0143c	0294				
Glycolysis	Pyruvate Kinase	2.7.1.40					0945c				
								α=0146c,	α=0012c,		
Glycolysis	Pyruvate dehydrogenase E1 component	1.2.4.1						β=0147c	β=0013c		
						α=0532c,				α=0200c,	
						β=0531c,				β=0199c,	
					α=0317,	γ=0534c,				γ=0202c,	
Glycolysis	Pyruvate:ferredoxin oxidoreductase	1.2.7.1			β=0318	δ=0533c	β=1197c			δ=0201c	
Glycolysis	Dihydrolipoamide dehydrogenase	1.8.1.4			0338		0174c		0297c		
Glycolysis	Acetate-CoA ligase	6.2.1.1				0158	0222c			0250c	

Table S4. TCA Genes

		Dehalococcoidales	Thermoflexales	Anaerolineales							
Carbon Utilizat	ion										
Pathway	Enzyme	EC number	AB-790-I04	AB-790-L07	AB-790-K11	AC-715-B04	AB-790-B16	AC-711-E09	AC-711-L07	AC-711-J10	AC-711-B22
TCA	Citrate Synthase	2.3.3.1						0089			
TCA	Aconitase	4.2.1.3									
TCA	Isocitrate dehydrogenase	1.1.1.42/1.1.1.41		0084							0381c
						α=0512c, β=0488c/0513, γ=0514c,	α=0609/0610, β=0134c/0611, γ=0612,			α=0075/0544c, β=0076, γ=0077,	$\alpha = 1089,$ $\beta = 1090,$ $\gamma = 0588,$
TCA	2-Oxoacid:acceptor oxidoreductase	1.2.7.3				δ=0511	δ=0608			δ=0074	δ=0587
TCA	Succinyl-CoA synthetase (ADP-forming)	6.2.1.5									α=1198, β=1196
TCA	Fumerate Reductase	1.3.5.4							C=0522c, D=0521c		
TCA	Succinate Dehydrogenase	1.3.5.1							0523c, 0524c,	0756c	1176c
TCA	Fumarase, class I, aerobic	4.2.1.2				0072,0073	0778, 0780				0317, 0319
TCA	Malate Dehydrogenase	1.1.1.37		0085							0249c
TCA	Pyruvate/oxaloacetate carboxyltransferase	6.4.1.1					0801c				

			Estimated Genome	
		SSU % ID to	Recovery (Based on	Estimated Size of
		Nearest	Nearest Neighbor	Genome
SAG Name	Nearest Sequenced Neighbor	Neighbor	tRNA Count)	(Based on tRNAs)
AC-711-E09	Anaerolinea thermophila UNI-1	82.54%	4%	3,831,175
AB-790-I04	Dehalogenimonas lykanthroporepellens BL-DC-9	87.41%	11%	1,768,736
AB-790-L07	Thermoflexus hugenholtzii JAD2	85.62%	16%	2,908,579
AB-790-K11	Anaerolinea thermophila UNI-1	80.72%	36%	1,371,942
AC-715-B04	Anaerolinea thermophila UNI-1	78.50%	8%	7,697,700
AC-711-L07	Anaerolinea thermophila UNI-1	84.27%	22%	3,639,645
AC-711-J10	Anaerolinea thermophila UNI-1	78.95%	40%	2,527,060
AB-790-B16	Anaerolinea thermophila UNI-1	78.56%	66%	1,906,780
AC-711-B22	Anaerolinea thermophila UNI-1	78.47%	52%	2,737,423

Table S5. Estimated genome size based percent genome recovery as determined by tRNAs of nearest neighbor.

Figure S1. Pairwise comparisons of *Chloroflexi* genomes ANI vs. SSU percent identity. Dashed lines represent species level cutoff values.

Figure S2. N-terminal amino acid alignment of RdhA sequences, including the one found in SAG An-B22 with boxes highlighting the Fe-S cluster binding motif. This is a subset of the amino acid alignment that was used to create Figure 4.